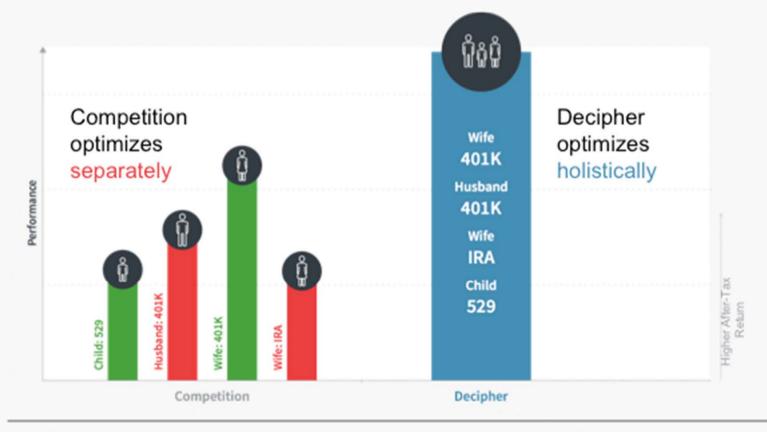
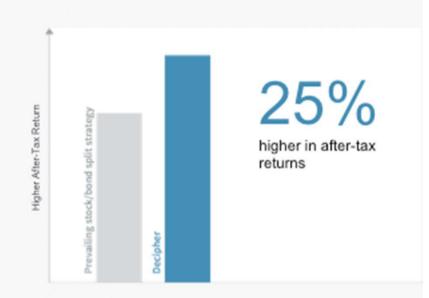


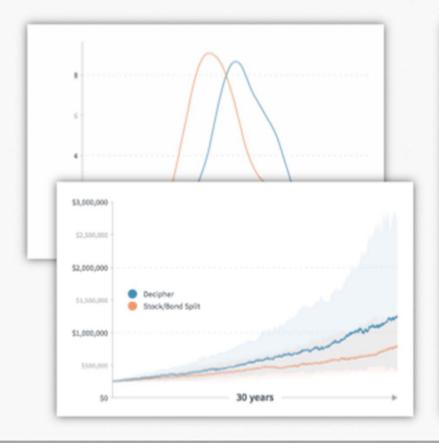
Decipher



CLEAR ADVICE

Decipher Finance LLC | CONFIDENTIAL


Holistic Advice Means More After-Tax Dollars

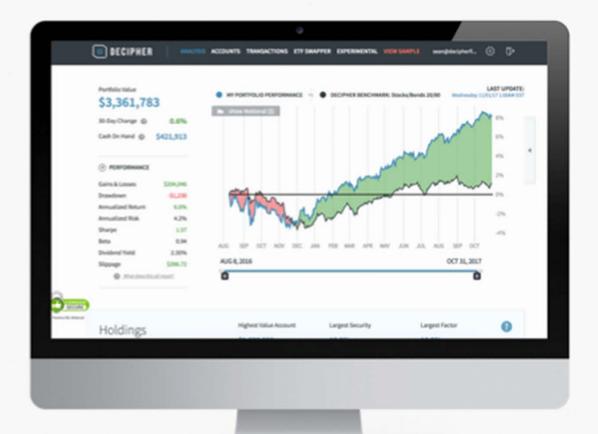

Potential

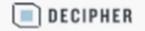
1 Bp \$100 \$100 Million Million = \$1 Trillion \$25 Trillion

Pioneering

The system now sets up the objective function for the optimization as in equation (1) by replacing $\hat{\mu}$ and $\hat{\Sigma}$ with $\hat{\mu}^{(A)}$ and $\hat{\Sigma}^{(A)}$ respectively with $K^{(A)} = K \cdot n$ rows and $\mathbf{X}^{(n)}$ is the vector of positions in account a.

$$\max_{\mathbf{x}} E(U) = \hat{\mu}^{(A)} \mathbf{x} - \kappa \mathbf{x}^{T} \hat{\mathbf{\Sigma}}^{(A)} \mathbf{x}$$
(4)


subject to:

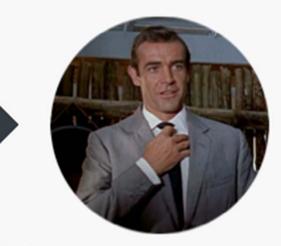

- x ≥ 0
- 2. $1^T x = d$
- 1^Tx^(a) = d_a, ∀a ∈ A where d_a is the dollar amount of all securities and cash in account a
- 4. $(\pi^{(a)})^T \mathbf{x}^{(a)} = 0, \forall a \in A \text{ where } \pi_{aj} = 1 \text{ if security } s_j \notin S_a \text{ and } 0 \text{ otherwise}$
- 5. $\mathbf{F}\mathbf{x}=\mathbf{f}$ where each entry $F_{i,j}=1$ if $s_j\in S_F$ and i=j and \mathbf{f} is the vector of fixed positions
- Gx ≤ h where G_{i,j} = 1 if f(s_j) = θ_i for i = 1, 2, ..., n and h_i = B_U(θ_i) where there are n factors and B_U(θ) is the upper dollar bound on factor θ
- 7. $\mathbf{Gx} \leq \mathbf{h}$ where $G_{i,j} = -1$ if $f(s_j) = \theta_i$ for i = 1, 2, ..., n and $h_i = -B_L(\theta_i)$ where there are n factors and $B_L(\theta)$ is the lower dollar bound on factor θ
- Gx ≤ h where G_{i,j} = 1 if i = j and h_i = B_U(s_j, a_{|i|(n)}) where B_U(s, a) is the upper dollar bound on security s in account a and there are m accounts
- Gx ≤ h where G_{i,j} = −1 if i = j and h_i = −B_L(s_j, a_(i,j,n)) where B_L(s, a) is the lower dollar bound on security s in account a and there are m accounts
- 10. $y^{(a)} \ge 0$, $a \in A$

11.
$$\nu^{(a)} - \frac{1}{N} r^{(a)} \ge \delta^{(a)}, a \in A$$

Practical

Summation

Hyper-Personalization



Higher Returns

Reduced Tail Risk

Reduced Taxes

Happy Customers Higher Revenue

