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Problem Solved Already!




The Second-Oldest Problem in Finance




PORTFOLIO SELECTION*

HARRY MARKOWITZ
The Rand Corporation

THE PROCESS OF SELECTING a portfolio may be divided into two stages.
The first stage starts with observation and experience and ends with
beliefs about the future performances of available securities. The
second stage starts with the relevant beliefs about future performances
and ends with the choice of portfolio. This paper is concerned with the
second stage. We first consider the rule that the investor does (or should)
maximize discounted expected, or anticipated, returns. This rule is re-
jected both as a hypothesis to explain, and as a maximum to guide in-
vestment behavior. We next consider the rule that the investor does (or
should) consider expected return a desirable thing and variance of re-
turn an undesirable thing. This rule has many sound points, both as a
maxim for, and hypothesis about, investment behavior. We illustrate
geometrically relations between beliefs and choice of portfolio accord-
ing to the “‘expected returns—variance of returns” rule.
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Markowitz: Theory vs. Practice

Markowitz (1952, JF) solved the problem of portfolio selection in theory.

His formulas use two inputs:
(i) the vector of means and
(ii) the covariance matrix

of the relevant asset returns.
In practice, these inputs are unknown and have to be estimated from data.

This problem has been
9 a source of great frustration to portfolio managers

@ asource of great (paper) creation to academic researchers



Markowitz: Early Days

Early practice:
o Estimate the two inputs by their sample counterparts
@ These estimators are unbiased and MLEs under normality

Early critics:

@ Jobson and Korkie (1980, JASA), Michaud (1989, FAJ), and Chopra
and Ziemba (1993, JPM), among others, showed that
this practice leads to unstable and underdiversified portfolios

@ Therefore, such portfolios have poor out-of-sample performance

Michaud (1989, FAJ) coined the term “estimation error maximizers”.
This is because Markowitz portfolios favor assets with

9 large estimated means

9 negative estimated covariances

@ small estimated variances



Markowitz: Estimation Error Maximization

Vector of means:
@ Financial returns are notoriously noisy

@ Thus, sample means are very unreliable

Covariance matrix:
@ Often the number of assets is comparable to the sample size
9 In such a case, the sample covariance matrix is ill-conditioned

@ This is a major reason for unstable portfolios, since the Markowitz
formulas use the inverse of the covariance matrix

Example: 5 years of daily data on the Russell 1000
@ Sample size: T' ~ 1, 260 days
@ Dimension: N = 1, 000 stocks



Harvey, Liu, and Zhu (2016, RFS)
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Find a covariance matrix estimator that is optimal in a stylized setting
of the Markowitz portfolio selection problem.

Key: Dimension of the space of candidate estimators

Degrees of freedom

Number of parameters to be estimated jointly

— Classification of the relevant literature.
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Early Days: O(N?)

Estimator: sample covariance matrix.
Number of free parameters: N (N + 1)/2.

Seemed like a good idea:
@ Unbiased estimator
@ Maximum likelihood estimator (under normality)

Sad reality:
@ Leads to unstable and underdiversified portfolios

@ Such portfolios have poor out-of-sample properties

Unless N < T
@ Sample covariance matrix is ill-conditioned

@ Too much estimation error

Fact: O(N?) is too big.



Extremist Reaction: O(0)

‘Estimator’: identity covariance matrix.
That is, do not estimate the covariance matrix at all!

Promoters:
@ Fama and French (1993, JF): sort into deciles

@ DeMiguel, Garlappi, and Uppal (2009, RFS) additionally abstain
from the estimation of the vector of means: 1/N portfolio

@ Brandt, Santa-Clara, and Valkanov (2009, RFS):
portfolio spanned by vector(s) of means

Fact: O(0) can be less bad than O(N?) but is too small.



Former State of the Art: O(1)

Synthesis of the first two approaches: linear shrinkage.

Estimator: convex combination of

@ sample covariance matrix

o (multiple of the) identity matrix: shrinkage target
Proposed by Ledoit and Wolf (2004, IMVA).

Only one parameter:
@ Shrinkage intensity (weight of the shrinkage target)

Linear shrinkage can be adapted to alternative shrinkage targets:
@ Single-factor model, as in Ledoit and Wolf (2003, JEF)
@ Constant-correlation model, as in Ledoit and Wolf (2004, JPM)

Fact: O(1) is better than both O(0) and O(N?).



Alternative O(1) Methods

DeMiguel, Garlappi, Nogales, and Uppal (2009, MS):
9@ Norm-constrained portfolios
@ Only for global mininum variance portfolio
@ Needs cross validation
@ Beats LW only in 1 out of 5 data sets

Frahm and Memmel (2010, JoE):
@ Shrink portfolio weights to 1/N

@ Only for global mininum variance portfolio

Kan and Zhou (2007, JFQA):

@ Weighted combination of sample portfolios with riskfree rate

Tu and Zhou (2011, JFE):
@ Weighted combination of various portfolios with 1/N

The last three proposals assume normality, do not work for N > T,
and do not compare to LW.



Tried so far:
o O(0): passable
@ O(1): former state of the art
@ O(N?): does not work, unless N < T

.. anything missing?



Not Yet Tried: O(N)

Realization:
@ Only (obvious) dimension that has not been tried yet
@ Only chance to beat the former state-of-the-art O(1)

@ But mathematically more challenging

Key insight:
@ Optimal estimator in N-dimensional space should beat optimal
estimator in 1- or 2-dimensional space (under nesting)

@ Have to able to squash estimation error to obtain a consistent estimator



Goldilocks & the Three Bears




0(0) and even O(1) are too small due to misspecification error.

O(N) is just right: largest number of free parameters that can be estimated
consistently when N ~ T'.

O(N?) is too big due to estimation error.



Goldilocks Payoff

Contributions relative to the O(1) proposal of LW (2004, JIMVA):
1. Search for optimal estimator in a much broader candidate space

2. Use an objective function that is tailor made for portfolio selection
(instead of generic mean squared error)

3. Resulting portfolios have better out-of-sample properties
(as demonstrated in Ledoit and Wolf (2017, RFS))
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N denotes the number of assets and 7" denotes the sample size.

The sample covariance matrix S admits a spectral decomposition
St = UrArUl

Here:

@ Uy is an orthogonal matrix whose columns are
the sample eigenvectors (ur.1, ..., ur N)

@ Arp is a diagonal matrix whose diagonal entries are
the sample eigenvalues (Ar 1, ..., A7, N)



Class of Estimators

Rotation Equivariance
@ Observed T' x N data matrix: Y
@ IV is an N-dimensional orthogonal / rotation matrix
@ Vg = f]T(YT) is a generic estimator of X
@ It is rotation-equivariant if 37 (Yp W) = W'Sq (Y)W

Without specific knowledge about X7, rotation equivariance
is a desirable property of an estimator.

We use the following class of rotation-equivariant estimators going back to
Stein (1975, 1986).

Sq = UrDgU} where Dy := Diag(dr.,...,drn) is diagonal

This is a class of dimension V.



Rotation-Equivariant Estimators

Generic estimator in the class 37 = UrDyUj.
Keep the sample eigenvectors.

Shrink the N sample eigenvalues individually:

o DT = Diag(dT()\Tyl), ey dT()\T,N))
@ Based on nonlinear shrinkage function dr : R — R4

LW (2004, JMVA) only consider linear shrinkage function dr.

Assumptions:

@ The shrinkage function may be stochastic through dependence
on the sample covariance matrix St

@ It converges to a non-stochastic limiting shrinkage function d
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Mininum Variance Loss Function:

. _ Tr(3p' e /N 1
Funy (Br, Br) = M(E /N TSN

Roughly speaking, Ly represents the true variance of the portfolio with the
minimum estimated variance, after suitable normalization.



Feasible Estimator

We use tools from random matrix theory and assume:
o N/T — ce (0,00),asT — 00
@ Data are independent and identically distributed (i.i.d.)
@ Moment an distribution conditions

@ Conditions on the eigenvalues of the true covariance matrix

Then:
™ CMV(fJT, Y r) is non-stochastic in the limit
@ Minimize the limiting expression with respect to d

@ The optimal d, denoted by d°, is an oracle
(meaning it depends on unknown population quantities)

o Construct a consistent estimator of d°, denoted by ci%

Feasible Nonlinear Shrinkage Estimator:

89 = UrDyU}  with DS = Diag(d3-(Ar,1), - -, dr(Ar.n))




Related Method: Eigenvalue Cleaning

A popular method used by practitioners is eigenvalue cleaning:
o Leave the large eigenvalues (“the signal”) unchanged
@ Make all the small eigenvalues (“the noise”) equal to their average
@ Usually based on the correlation matrix

@ Also called eigenvalue denoising

Remarks:
o This is a reasonable ad hoc method, but it is not optimal

o Large eigenvalues need to be adjusted too
(though differently from linear shrinkage)

@ Small eigenvalues should not be (exactly) equalized



Si Tacuisses, Philosophus Mansisses

A typical unwarranted claim from the machine learning crowd:

Financial Correlations Are Extremely Noisy

* The econometric canon does not include methods to de-noise and de-tone
correlation matrices

* As aresult, most econometric studies reach spurious conclusions, supported by
noise, not signal

16 —— Marcenko-Pastur (fitted) — original
mms Empirical:Histogram De-noised
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must be treated numerically to prevent false discoveries,
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The Importance of Good Forecasts

Good forecasts of time-varying objects can make the difference
between life and death.

Here is a weather-related example from the movie Sharknado 2:
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The Importance of Good Forecasts

Good forecasts of time-varying objects can make the difference
between life and death.

Here is a weather-related example from the movie Sharknado 2:
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‘We now turn to forecasts of time-varying covariance matrices.



Stylized fact:

@ Asset returns often exhibit co-volatility clustering,
at least at shorter frequencies, and are thus not i.i.d.

Common approach:
@ Use a multivariate GARCH model to capture this effect

Problem:
@ Such models suffer from the curse of dimensionality
@ Applications are generally limited to N < 100 assets



DCC-NL Model

Univariate volatilities governed by a GARCH(1,1) process:

2 _ 2 2
diy =wi+air; ;1 +bid;, 4

DCC model of Engle (2002, JBES) with correlation targeting:

Qi=01-a—-B)CH+as,_18_1+BQ¢1 (€))
where s, ¢ = 1i1/di ¢, St = (S1,,-..,8n,) and C := Cov(sy).
Conditional correlation and covariance matrices then:

R; = Diag(Q;)~"? Q, Diag(Q;)~'/?
Ht = DthDt

with 7| Fy_1 ~ N(0, Hy).

Key: Use nonlinear shrinkage to estimate the targeting matrix C' in (1).
—> DCC-NL model of Engle, Ledoit, and Wolf (2019, JFEC)
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Motivation & Problem

Stylized fact:
@ Asset returns follow (more or less) a factor model
o Examples: CAPM, APT, and Fama-French factor models

Common approach:

@ Use a structured estimator of the covariance matrix
that is ‘implied’ by the assumed factor model

Problem:
@ Which and how many factors to use?

9@ What if the factor model is misspecified?



A factor model assumes that
rig =+ Bifi +uwiye with E(ui|fy) =0,

where
@ f; € R is a vector of factor returns

@ o is an intercept and ; € R¥ is a vector of factor loadings

Implied Covariance Matrix:
H =B'Y;B+3,: with B:=[f,...,8n]. J

A static version assumes Xy = X and ¥, ¢+ = 3, which implies H; = H.



Different Versions

In all versions:

@ B is estimated by OLS, one asset at a time, yielding B = [51, .oy ON]
and residuals @, == ({14, ..., UN)

@ 3 is the sample covariance matrix of the {f;} and ¥, = 3
@ Use K = 1 or K = 5 Fama-French factors

Exact Factor Model (EFM):
@ Static model that assumes X, is diagonal

@ 3, is the diagonal part of the sample covariance matrix of the {t}

Approximate Factor Model (AFM-NL):
9 Static model that assumes nothing about X3,
@ 3, is obtained by applying nonlinear shrinkage to the {é;}

Approximate Factor Model (AFM-DCC-NL):
@ Dynamic model that assumes nothing about X, ;

° i)mt is obtained by applying DCC-NL to the {d; }



Averaged Forecasting

Problem:
@ In our backtest analysis, we use daily data

@ But we update the portfolios only once a month,
that is, once every 21 trading days

@ This creates a certain ‘mismatch’ for dynamic models

Solution of De Nard, Ledoit, and Wolf (2021, JFEC):

@ Forecast the covariance matrix separately for all 21 trading days
of the upcoming month

@ Then average these 21 forecasts and use the averaged matrix for
portfolio selection

To this end, we use standard proposals from the literature to forecast
(i) conditional volatilities based on GARCH(1,1) dynamics
(i1) conditional correlation matrices based on DCC-NL dynamics
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Data & Portfolio Rules

Stocks:
@ Download daily return data from CRSP
@ Period: 01/01/1973-12/31/2017

Observed factors:
@ Download return data for the five Fama-French factors

@ Available on the website of Ken French

Updating:
@ 21 consecutive trading days constitute one ‘month’

@ Update portfolios on ‘monthly’ basis

Out-of-sample period:
@ Start out-of-sample investing on 01/16/1978
@ This results in 10,080 daily returns (over 480 ‘months’)



Data & Portfolio Rules

Portfolio sizes:
@ We consider N € {100, 500, 1000}

Portfolio constituents:
@ Select new constituents at the beginning of each month

@ If there are pairs of highly correlated stocks (r > 0.95),
kick out the stock with lower market capitalization
o Find the N largest remaining stocks that have

(i) anearly complete 1260-day return history
(ii) a complete 21-day return future

Estimation:
@ Use previous 7' = 1260 days to estimate the covariance matrix



All measures are based on the 10,080 out-of-sample returns
and are annualized for convenience.

Performance measures:
@ AV: Average
@ SD: Standard deviation
@ IR: Information ratio
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Problem Formulation:

min w’ Hyw
w
subjectto w'l =1

(where 1 is a conformable vector of ones)

Analytical Solution:
L HT'1
w = P———
1'H, 1

Feasible Solution:
. H™1

A1




Performance Measures

N =100 N =500 N =1000
AV SD IR AV SD IR AV SD IR

Structure-Free Models
1/N 12.82 17.40 0.74 13.86 16.83 0.82 14.36 16.85 0.85
NL 11.94 11.74 1.02 11.91 863 1.38 12.28 7.45 1.65
DCC-NL 11.62 11.59 1.00 12.57 8.26 1.52 12.84 6.93 1.85

Exact Factor Models
EFM1 13.06 14.12 0.93 12,52 12.14 1.03 13.35 10.97 1.22
EFM5 13.02 12.68 1.03 12.68 1097 1.16 1290 9.72 1.33

Approximate Factor Models

POET 12.04 11.98 1.00 11.86 848 1.40 13.09 7.82 1.67
AFM1-NL 11.97 11.75 1.02 11.90 8.63 1.38 12.28 7.45 1.65
AFMS5-NL 11.95 11.76 1.02 11.88 8.63 1.38 1220 745 1.64
AFM1-DCC-NL 11.55 11.56 1.00 12.65 8.11 1.56 13.31 6.61 2.01
AFM5-DCC-NL  11.53 11.64 0.99 12,53 818 1.53 1292  6.65 1.94

Note: In the columns labeled “SD”, the best numbers are in blue.



Performance Measures (/N = 1000)

AV SD IR

Structure-Free Models

1/N 14.36  16.85 0.85
NL 12.28  7.45 1.65
DCC-NL 12.84 6.93 1.85

Exact Factor Models

EFM1 13.35 10.97 1.22
EFM5 12.90 9.72 1.33

Approximate Factor Models

POET 13.09 7.82 1.67
AFMI1-NL 12.28 745 1.65
AFMS5-NL 12.20 7.45 1.64

AFM1-DCC-NL 13.31 6.61 2.01
AFMS5-DCC-NL  12.92  6.65 1.94



@ Classification of the Literature

@ Class of Estimators

@ Loss Function and Feasible Estimator
@ Extension to Dynamic Models

@ Extension to Factor Models

© Backtest Analysis
@ Global Minimum Variance Portfolio
@ Markowitz Portfolio with Signal



Problem Formulation:

min w’ Hyw
w
subjectto w'm; =b and
wl=1

(where m, is a signal and b is a target expected return)

Analytical Solution:
w* = ClHt_l]]. + CQHt_lm
i o PP e AT
' AC - B2 T AC - B?

with A:=1H;'1 B:=1H;'" and C=m'H;'m

Feasible solution w replaces H; with an estimator I;Tt.



Signal and Target Expected Return

For the signal we use momentum:
@ Return over the last 12 months, excluding the most recent month
@ Has been around for a long time and is non-controversial

@ Also can be computed from observed return data alone,
whereas most other signals need outside information

Simple-minded benchmark:
o Equally invest in the top 20% of the stocks
o Called EW-TQ for “equally-weighted top-quintile”
@ In the spirit of portfolio sorts a la Fama and French

Target expected return:

@ We take b to be the expected return of the EW-TQ portfolio
according to momentum



Performance Measures

N =100 N =500 N =1000
AV SD IR AV SD IR AV SD IR

Structure-Free Models
EW-TQ 16.55 21.33 0.78 16.85 20.24 0.83 17.55 20.30 0.87
NL 14.76  14.16 1.04 14.54 10.10 1.44 15.00 8.75 1.71
DCC-NL 14.95 14.13 1.06 14.87 9.51 1.56 14.82  7.95 1.86

Exact Factor Models
EFM1 15.37 16.50 0.93 15.52 1393 1.11 16.33 12.78 1.28
EFM5 15.22 1549 0.98 15.76 12.80 1.23 1594 11.39 1.40

Approximate Factor Models

POET 14.53 14.33 1.01 14.28 10.02 1.43 15.45 9.10 1.70
AFM1-NL 14.79 14.16 1.04 14.52 10.09 1.38 15.00 8.75 1.72
AFMS5-NL 14.78 14.17 1.04 14.48 10.10 1.44 14.90 8.75 1.70
AFM1-DCC-NL 14.69 14.02 1.05 1524 946 1.61 1576 7.84 2.01
AFM5-DCC-NL  14.58 14.09 1.04 14.97  9.58 1.56 15.28 791 1.93

Note: In the columns labeled “IR”, the best numbers are in blue.



Our ‘simple-minded’ back-tests are meant to identify the best covariance
matrix estimator, not to evaluate realistic trading strategies.

Real-life portfolio managers face many additional constraints concerning
gross-exposure, factor exposure, trading costs, etc.

But they still benefit from using the best covariance matrix estimator.



Back-Tests vs. Monte Carlo Studies

Some consider Monte Carlo studies more informative than back-tests.

Often it is said that “history will not repeat itself”’, but then the DGP
of the Monte Carlo study is calibrated based on historical inputs ...

Monte Carlo studies offer flexibility to make one’s own methods
look good compared to other methods.
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Conclusion

Naive benchmarks based on sorting and equal-weighting
can be outperformed easily, at least when investing in individual stocks.

Dynamic covariance matrix estimators outperform static ones.

Injecting factor structure pays off, but no need to go beyond
the market factor if the residual covariance matrix is handled smartly.

This is good news for investors outside of the US.

The overall winner is AFM1-DCC-NL:
@ Uses only the market factor
@ Models the residual covariance matrix with DCC-NL
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