
1/48

Interpretable Deep Learning for Fundamental Factor Modeling1

Matthew F. Dixon, Ph.D., FRM
Department of Applied Mathematics

Illinois Institute of Technology

UBS Quant Webinar Series
2020.7.28

1github.com/mfrdixon/Deep Fundamental Factor



2/48

Presentation Overview

I Review of equity fundamental factor models
I Deep fundamental factor models

I Problem formulation
I Interpretability of factors with Russell 1000 portfolio example

I Interaction effects with same example
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Linear Cross-sectional Factor Models

I Consider the fundamental equity factor model (Barra style2):

rt = Bt ft + et , t = 1, . . . ,T

I Bt = [1 | b1,t | · · · | bK ,t ] is the N × K + 1 matrix of known fundamental factor
exposures

I (bi,t )k is the exposure (a.k.a. loading) of asset i to factor k at time t
I ft = [α, f1,t , . . . , fK ,t ] is the K + 1 vector of unknown factor realizations
I rt is the N vector of asset returns
I ρ(ft , et ) = 0 and cross-sectional homoskedasticity E[e2

t,i ] = σ2
t .

2See Grinold and Kahn (2000), Conner et al. (2010), and Cariño et al. (2010).
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Non-linear/Non-parametric Factor Models

I Consider the non-linear fundamental factor model:

rt = F(Bt ) + et

I F : RK → R is a (differentiable) non-linear function
I Do not assume that et is Gaussian or require any other restrictions on et , i.e. error

distribution is non-parametric
I The model shall just be used to predict the next period asset returns only and

stationarity of the factor returns is not required
I This model maps on to popular deep learning based predictive models.
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Taxonomy of Most Popular Deep Learning Architectures

feed forward (Regression) auto-encoder (PCA) convolution (Wavelets)

recurrent Long / short term memory (state-space) neural Turing machines

Figure: Most commonly used deep learning architectures for modeling. Source: http://www.asimovinstitute.org/neural-network-zoo

http://www.asimovinstitute.org/neural-network-zoo
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Quick Quiz

Which of the following statements are true?

A Machine learning is different from statistics: Machine learning methods assume the
data generation process is unknown

B Machine learning uses the bias-variance tradeoff to avoid over-fitting

C We need multiple hidden layers in the neural network to capture non-linearity

D Neural networks provide no statistical interpretability, they are ’black-boxes’ and the
importance of the features is unknown
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Quick Quiz

Which of the following statements are true?

A Machine learning is different from statistics: Machine learning methods assume the
data generation process is unknown [True]

B Machine learning uses regularization and other techniques to tradeoff bias and
variance, with the emphasis on out-of-sample performance [True]

C We need multiple hidden layers in the neural network to capture non-linearity [False3]

D Neural networks provide no statistical interpretability, they are ’black-boxes’ and the
importance of the features is unknown [False]

3The Universal representation theorem suggests that we only need one hidden layer: Andrei Nikolaevich Kolmogorov, On the representation of
continuous functions of many variables by superposition of continuous functions of one variable and addition.
AMS Translation, 28(2):55-59, 1963.
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Quick Overview of Supervised Machine Learning

Property Statistical Inference Supervised Machine Learning
Goal Causal models with explanatory power Prediction performance, often with limited explanatory power
Data The data is generated by a model The data generation process is unknown
Framework Probabilistic Algorithmic & Probabilistic
Expressability Typically linear Non-linear
Model selection Based on information criteria Numerical optimization
Scalability Limited to lower dimensional data Scales to higher dimensional input data
Robustness Prone to over-fitting Designed for out-of-sample performance
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Supervised Machine Learning

I Machine learning addresses a fundamental prediction problem: Construct a nonlinear
predictor, Ŷ(X), of an output, Y , given a high dimensional input matrix
X = (X1, . . . ,XP ) of P variables.

I Machine learning can be simply viewed as the study and construction of an
input-output map of the form

Y = F(X) where X = (X1, . . . ,XP ).

I The output variable, Y , can be continuous, discrete or mixed.
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Geometric Interpretation of Neural Networks

x1 x2 x1 x2 x1 x2

No hidden layers One hidden layer Two hidden layers



11/48

Geometric Interpretation of Neural Networks

Half-Moon Dataset

No hidden layers One hidden layer Two hidden layers
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More Neurons?

x1 x2
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Geometric Interpretation of Neural Networks

25 hidden units 50 hidden units 75 hidden units

Figure: The number of hidden units is adjusted according to the requirements of the classification
problem and can he very high for data sets which are difficult to separate.
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Feedforward Networks

I The activation functions are essential for the network to approximate non-linear
functions. For example if there is one hidden layer and f (1) is the identify function then

Ŷ(X) = W (2)(W (1)X + b(1)) + b(2) = W (2)W (1)X + W (2)b(1) + b(2) = W ′X + b ′

is just linear regression, i.e. an affine transformation4

I Clearly, if there are no hidden layers, the architecture recovers standard linear
regression

Y = WX + b.

(or logistic regression σ(WX + b))
I => Key insight for developing interpretability

4While the functional form of the map is the same as linear regression, neural networks do not assume a data
generation process and hence inference is not identical to ordinary least squares.
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Explanatory Power of Deep Networks

I In a linear regression model

Ŷ = Fβ(X) := β0 + β1X1 + · · ·+ βK XK

the sensitivities are
∂Xi Ŷ = βi

I In a FFWD neural network, we can use the chain rule to obtain the sensitivities

∂Xi Ŷ = ∂Xi FW ,b (X) = ∂Xi f
(L)
W (L) ,b(L) ◦ · · · ◦ f (1)

W (1) ,b(1) (X)

I => Key Idea: Resolve the interpretability at the sub-graph level rather than down to
individual edges
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Example: Step test

I The model is trained to the following data generation process where the coefficients of
the features are stepped:

Ŷ =
10

∑
i=1

iXi , Xi ∼ U (0, 1).
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Example: Step test
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Figure: Step test: This figure shows the ranked importance of the input variables in a fitted neural network with one hidden layer.
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Robustness of Interpretability

I If the data is generated from a linear model, can the neural network recover the correct
weights?

Y = β1X1 + β2X2 + e, X1,X2, e ∼ N(0, 1), β1 = 1, β2 = 1

I Compare OLS estimators with zero hidden layer NNs and single hidden layers NNs.
I Use tanh activation functions for smoothness of the Jacobian because max(x, 0)

gives a piecewise constant Jacobian.
I Increase the number of hidden units and show that the variance of the sensitivities

converges.
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Robustness of Interpretability

Method β̂0 β̂1 β̂2
OLS 0 1.0154 1.018

NN (zero hidden layers) 0.03 1.0184141 1.02141815
NN (1 hidden layers) 0.02 1.013887 1.02224
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Robustness of Interpretability

(a) density of β̂1 (b) density of β̂2
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Robustness of Interpretability (β̂1)

Hidden Units Mean Median Std.dev 1% C.I. 99% C.I.
2 0.980875 1.0232913 0.10898393 0.58121675 1.0729908

10 0.9866159 1.0083131 0.056483902 0.76814914 1.0322522
50 0.99183553 1.0029879 0.03123002 0.8698967 1.0182846

100 1.0071343 1.0175397 0.028034585 0.89689034 1.0296803
200 1.0152218 1.0249312 0.026156902 0.9119074 1.0363332

The confidence interval narrows with increasing number of hidden units.
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Robustness of Interpretability (β̂2)

Hidden Units Mean Median Std.dev 1% C.I. 99% C.I.
2 0.98129386 1.0233982 0.10931312 0.5787732 1.073728

10 0.9876832 1.0091512 0.057096474 0.76264584 1.0339714
50 0.9903236 1.0020974 0.031827927 0.86471796 1.0152498

100 0.9842479 0.9946766 0.028286876 0.87199813 1.0065105
200 0.9976638 1.0074166 0.026751818 0.8920307 1.0189484

The confidence interval narrows with increasing number of hidden units.
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Deep Factor Models

I We arrive at our deep factor model:

rt = FW ,b (Bt ) + et

where FW ,b (X) is a deep network with L layers

r̂(X) := FW ,b (X) = f (L)
W (L) ,b(L) ◦ · · · ◦ f (1)

W (1) ,b(1) (X)
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Experimental Setup

I We define the estimation universe as the Russell 1000 index
I The model has 18 fundamental factors and 31 GICS sector dummy variables
I Factor exposures are given by Bloomberg and reported monthly
I Remove symbols with missing factor exposures and any symbols dropped from the

index are carried for the next 12 months to avoid excessive turnover
I Use a 30 year period (with 3290 stocks in total), fit a Deep factor model or an OLS

based factor model at each period and use the model to forecast the next period
monthly returns.
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Experimental Design

Figure: The experiment is designed so that the factor model is fitted over period t and then tested over
period t + 1. Each labeled training set is a factor loading matrix Bt and return vector rt over N assets.
Note that the assets need not be fixed over the periods (i.e. permit turnover).
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Estimation Error
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Figure: The out-of-sample stock returns error, under the L∞ norm, is compared between OLS and a
two-hidden layer deep network applied to a coverage universe of 3290 stocks from the Russell 1000
index over the period from January 1990 to November 2018. The average L∞ error is shown in
parenthesis.
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Estimation Error

I We observe the ability of the neural network to capture outliers, with the L∞ norm of
the error in the NN being an order of magnitude smaller than in the OLS model at two
dates, 2000-01-01 and 2015-10-01

I The average L∞ norms over all periods is shown in parenthesis and is a factor of 2x
smaller for NNs

I The L∞ norm of the OLS error falls to 1.5483 if these two dates are excluded
I The out-of-sample MSEs for NNs and OLS are 0.026 and 0.254 - the latter decreases

to 0.028 with these dates removed.
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Portfolio Performance
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Figure: The information ratios of a portfolio selection strategy which selects the n stocks from the
universe with the highest predicted monthly returns. The information ratios are evaluated for various
equally weighted portfolios whose number of stocks are shown by the x-axis.
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Portfolio Performance

I The information ratios are evaluated for equally weighted portfolios with varying
numbers of stocks.

I Also shown, for control, are randomly selected portfolios, without the use of a
predictive signal.

I The mean information ratio for each model, across all portfolios, is shown in
parentheses.

I We observe that the information ratio of the portfolio returns, using the deep learning
model (with ReLU), is approximately 1.5x greater than the OLS model.

I We also observe that the information ratio of the baseline random portfolio is small, but
not negligible, suggesting sampling bias and estimation universe modification have a
small effect.
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Sector Tilts
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Figure: The sector tilts are shown over time for each sector, in descending order. The mean (and std.
devs.) of the sector ratios, over the ten year period, are shown in the legends.
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Sector Tilts

I The figure shows the sector tilts of equally weighted portfolios constructed from the
predicted top performing 50 stocks, in each monthly period, over the most recent ten
year period in the data.

I The sectors are ranked by their time averaged ratios, but their tilts vary each month as
the portfolios turn-over.

I Financials is the most dominant sector, with almost 20% time averaged representation.
This is followed by Consumer Discretionary. Note that three of the least representative
sectors are excluded: Energy, Communication Services, and Real Estate. The sector
tilts across the NN and the OLS are found to be comparable on average.

I The outlier date, 2015-10-01, is marked with a vertical dashed line.
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Sector Tilts on Outlier Date
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Figure: The sector tilts are compared on the outlier date, 2015-10-1, between OLS and Deep Factor
model driven portfolios.
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Factor Tilts
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Figure: The (scaled) factors, averaged over the portfolio, are shown over time for a subset of the factors.
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Factor Tilts

I The figure shows the corresponding (scaled) factors, averaged over the portfolio, for a
subset of the factors with non-trivial differences in tilts between OLS and NNs.

I In comparison with OLS, we observe that NNs favor assets with higher Book to Price,
Earning to Price, and Cash Flow Volatility to Total Assets.

I OLS favors stocks with higher Total Asset Growth, Sales Volatility to Total Assets, and
Rolling CAPM Beta.

I Note on the outlier date, the NN portfolio overweights Market Cap, Earnings Volatility
to Total Assets, and Sales.
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Factor Tilts on Outlier Date
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Factor Tilts on Outlier Date

Factor Description
B/P Book to Price

CF/P Cash Flow to Price
E/P Earning to Price

EB/EV EBIDTA to EV
FE/P Forecasted E/P
TAG Total Asset Growth
MC Log (Market Capitalization)
S Log (Sales)

EaV/TA Earnings Volatility
to Total Assets

CFV/TA Cash Flow Volatility
to Total Assets

SV/TA Sales Volatility
to Total Assets

CB Rolling CAPM Beta
DIV Dividend yield
EG Earnings Growth

Table: A brief
description of the
factor
abbreviations.5
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Figure: The factor tilts are compared on the outlier date, 2015-10-1, between
OLS and Deep Factor model driven portfolios.

5A more detailed description of these factors is provided on Slide 38.
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Factor Sensitivities (against OLS)

(a) Deep Neural Network (b) OLS

Figure: Both the OLS and DNN are fitted to cross-sectional data for every time period. The overall
probability that the following factors are in the top fifteen, as ranked by sensitivities, is compared
between the DNN (left) and OLS (right). For the DNN, EBIDTA to EV (5), Forecasted Earning/Price (6)
and Earnings Volatility to Total Assets (12) are the three most likely factors. For the OLS model,
Earnings/Price (3), Forecasted Earning/Price (6) and EBIDTA to EV (5) are the top three most likely
factors. Hence both models agree on many of the factor importances.



38/48

Description of Fundamental Factors

ID Symbol Value Factors
1 B/P Book to Price
2 CF/P Cash Flow to Price
3 E/P Earning to Price
4 S/EV Sales to Enterprise Value (EV). EV is given by

EV=Market Cap + LT Debt + max(ST Debt-Cash,0),
where LT (ST) stands for long (short) term

5 EB/EV EBIDTA to EV
6 FE/P Forecasted E/P. Forecast Earnings are calculated from Bloomberg earnings consensus estimates data.

For coverage reasons, Bloomberg uses the 1-year and 2-year forward earnings.
17 DIV Dividend yield. The exposure to this factor is just the most recently announced annual net dividends

divided by the market price. Stocks with high dividend yields have high exposures to this factor.
Size Factors

8 MC Log (Market Capitalization)
9 S Log (Sales)
10 TA Log (Total Assets)

Trading Activity Factors
11 TrA Trading Activity is a turnover based measure. Bloomberg focuses on turnover which is trading volume normalized by shares outstanding.

This indirectly controls for the Size effect. The exponential weighted average (EWMA) of the ratio of shares traded to shares outstanding:
In addition, to mitigate the impacts of those sharp short-lived spikes in trading volume, Bloomberg winsorizes the data:
first daily trading volume data is compared to the long-term EWMA volume(180 day half-life),
then the data is capped at 3 standard deviations away from the EWMA average.
Earnings Variability Factors

12 EaV/TA Earnings Volatility to Total Assets.
Earnings Volatility is measured over the last 5 years/Median Total Assets over the last 5 years

13 CFV/TA Cash Flow Volatility to Total Assets. Cash Flow Volatility is measured over the last 5 years/Median Total Assets over the last 5 years
14 SV/TA Sales Volatility to Total Assets. Sales Volatility over the last 5 years/Median Total Assets over the last 5 year

Volatility Factors
15 RV Rolling Volatility which is the return volatility over the latest 252 trading days
16 CB Rolling CAPM Beta which is the regression coefficient from the rolling window regression of stock returns on local index returns

Growth Factors
7 TAG Total Asset Growth is the 5-year average growth in Total Assets divided by the Average Total Assets over the last 5 years
18 EG Earnings Growth is the 5-year average growth in Earnings divided by the Average Total Assets over the last 5 years
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Interaction terms

I Even with one hidden layer, the activation function introduces interaction terms XiXj .
I Hence the off-diagonals of the Hessian give the interaction terms.
I Let’s consider a famous toy example, the Friedman test, to illustrate how deep learning

captures interaction terms.

Y = 10 sin (πx1x2) + 20 (x3 − 0.5)2 + 10x4 + 5x5 + e,
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Example: Friedman test for sensitivities
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Figure: Friedman test: Estimated sensitivities of the fitted neural network to the input.
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Example: Friedman test for interaction terms
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Figure: Friedman test: Estimated interaction terms in the fitted neural network to the input.
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Factor Sensitivities (against LASSO)

Factor Description
E/P Earning to Price

FE/P Forecasted E/P
S/EV Sales to

Enterprise Value (EV)
MC Log (Market Cap.)
TrA Trading Activity
TAG Total Asset Growth

EB/EV EBIDTA to EV
TA Total Assets

EaV/TA Earnings Volatility
to Total Assets

SV/TA Sales Volatility
to Total Assets

CF/P Cash Flow to Price
S Log (Sales)

CFV/TA Cash Flow Volatility
to Total Assets

B/P Book to Price
Figure: The distribution of factor model sensitivities and interaction terms over the entire ten
year period using the deep neural network applied to the Russell 3000 asset factor loadings
(top). The sensitivities are sorted in descending order from left to right by their absolute median
values and the top 20 terms have been shown. The same sensitivities using LASSO regression
are shown (bottom). Terms with XX YY denote pairwise interaction effects between factors XX
and factors YY. We note that interaction terms feature prominently in the LASSO model but not
in the DNN. Trading Activity (TrA), Log Market Cap (MC) and Log (Total Assets) (TA) are
observed to be the most important factors which are common between the models.
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Deep Fundamental Factor Sensitivities

Factor Description
E/P Earning to Price

FE/P Forecasted E/P
S/EV Sales to

Enterprise Value (EV)
MC Log (Market Cap.)
TrA Trading Activity
TAG Total Asset Growth

EB/EV EBIDTA to EV
TA Total Assets

EaV/TA Earnings Volatility
to Total Assets

SV/TA Sales Volatility
to Total Assets

CF/P Cash Flow to Price
S Log (Sales)

CFV/TA Cash Flow Volatility
to Total Assets

B/P Book to Price

Figure: The medians of factor model sensitivities and interaction terms over the entire ten
year period using the deep neural network applied to the Russell 1000 asset factor loadings
(top). The same sensitivities using LASSO regression are shown (bottom). The sensitivities to
Trading Activity (TrA) and Log Market Cap (MC) are both positive and Log Total Assets (TA) are
negative in LASSO and the DNN.
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Summary

I Deep fundamental factor models are developed to automatically capture non-linearity
and interaction effects in factor modeling

I Uncertainty quantification provides interpretability with interval estimation, ranking of
factor importances and estimation of interaction effects

I With no hidden layers we recover a linear factor model and for one or more hidden
layers, uncertainty bands for the sensitivity to each input naturally arise from the
network weights

I Using 3290 assets in the Russell 1000 index over a period of December 1989 to
January 2018, we assess a 50 factor model and generate information ratios that are
approximately 1.5x greater than the OLS factor model. Furthermore, we compare our
deep fundamental factor model with a quadratic LASSO model and find less sensitivity
to interaction effects (in addition to superior performance)
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Feedforward Networks

Definition
A feedforward network is a particular class of multivariate function F(X) constructed using
a sequence of L layers via a composite map

Ŷ(X) := FW ,b (X) =
(

f (L)
W (L) ,b(L) . . . ◦ f (1)

W (1) ,b(1)

)
(X).

I f (`)
W (`) ,b(`) (X) := f (`)(W (`)X + b(`)) where f (`) is a univariate and continuous

semi-affine function.
I W = (W (1), . . . ,W (L)) and b = (b(1), . . . , b(L)) are weight matrices and offsets

respectively.
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Feedforward Networks
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Figure: An illustrative example of a feed-forward neural network with two hidden layers, six features and two output states. Deep learning
network classifiers typically have many more layers, use a large number of features and several output states or classes. The goal of learning is to
find the weight on every edge that minimizes the out-of-sample error measure.
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