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Aim:
Ø maximize gains &
Ø minimize risk

Portfolio optimization

Mean-Variance approach

Ø Maximize return’s mean
Ø Minimize return’s variance

Exact solution: 

W = 𝚺-1 (c1𝜇 + c21)

Problem setting
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1. Poor modeling 
2. Parameter estimation error 
3. Non-stationarity
• Unique and irreproducible observation set
• Error amplification via optimization

Optimal portfolio issues

Problem setting

These are general issues not exclusive to the mean-variance 
approach
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• Returns are not normal, a better modeling is by using elliptical family 
distribution

• Elliptical family distributions depend on 
Ø mean 𝜇
Ø covariance 𝚺
Ø other parameters (i.e. degrees of freedom)

• With multivariate elliptical modeling, portfolios have location-scale 
distributions, therefore mean-variance portfolio optimization is consistent 
with elliptical distribution modeling

Market modeling: 
elliptical distribution family

Problem 1: solution 
• Aste, Tomaso. "Stress testing and systemic risk 

measures using multivariate conditional 
probability." Available at SSRN 3575512 (2020).

• Aste, Tomaso. "Topological regularization with 
information filtering networks." arXiv preprint 
arXiv:2005.04692 (2020).
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• Optimal portfolio mean-variance solution requires the estimation of:
Ø mean 𝜇
Ø covariance 𝚺

• Sample estimators converge only asymptotically ( 1/t1/2 )
• Small observation sets and large number of variables yield to 

overfitting solutions (curse of dimensionality)
• Observation time is finite

Parameter estimation

Problem 2: setting
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• The dependency structure in a market can be captured using Information 
Filtering Networks

• These networks can be used to estimate the covariance from a sum of local 
low-dimensional covariance estimates

• This is a L0-norm regularization
• Better performing than Lasso or Ridge estimates

Parameter estimation using 
L0-norm regularization

Problem 2: solution
• Barfuss, W., Massara, G.P., Di Matteo, T. 

and Aste, T., 2016. Parsimonious modeling
with information filtering networks. Physical 
Review E, 94(6), p.062306.

• Aste, Tomaso. "Topological regularization 
with information filtering networks." arXiv
preprint arXiv:2005.04692 (2020).
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Information filtering networks

Problem 2: implementation 

• IFN are networks 
constructed retaining the 
most relevant 
dependency links

• their structure describes 
well the market structure

• when they are clique-
trees (chordal) they can 
be used for L0-norm 
regularization 
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• Tumminello, M., Aste, T., Di Matteo, T. and 
Mantegna, R.N., 2005. A tool for filtering 
information in complex 
systems. Proceedings of the National 
Academy of Sciences, 102(30), pp.10421-
10426.

• Aste, T., Shaw, W. and Di Matteo, T., 2010. 
Correlation structure and dynamics in 
volatile markets. New Journal of 
Physics, 12(8), p.085009.

• Pozzi, F., Di Matteo, T. and Aste, T., 2013. 
Spread of risk across financial markets: 
better to invest in the peripheries. Scientific 
reports, 3(1), pp.1-7.

• Guido Previde Massara, Tiziana Di Matteo 
and Aste, Tomaso Network filtering for big 
data: Triangulated maximally filtered graph 
Journal of complex Networks, 5 (2016) 161-
-178

• Massara, G.P. and Aste, T., 2019. Learning 
clique forests. arXiv preprint 
arXiv:1905.02266.



𝚺-1 is given by the sum of local low-dimensional inverse covariances 
computed over the cliques and separators. 

This solves the curse of dimensionality problem
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LoGo: Local Global approach to covariance 
estimation problem

Problem 2: implementation 

BARFUSS, MASSARA, DI MATTEO, AND ASTE PHYSICAL REVIEW E 94, 062306 (2016)

FIG. 3. Local-global inversion of the covariance matrix. Example for a system of p = 10 variables associated with a decomposable TMFG
graph with Mc = 7 cliques and Ms = 6 separators.

Rp×p. They are the Lagrange multipliers associated with the
second moments of the distribution E[(Xi − µi)(Xj − µj )] =
!i,j , which are the coefficients of the covariance matrix
! ∈ Rp×p of the set of p variables X . It is clear that Eq. (3) is
a multivariate normal distribution with Z =

√
(2π )p det (!).

If we require the model f (X) to reproduce exactly all
second moments !i,j , then the solution for the distribution
parameters is J = !−1. Therefore, in order to construct the
model, one could estimate empirically the covariance matrix
!̂ from a set of q observations and then invert it in order
to estimate the inverse covariance. However, in the case
when the observation length q is smaller than the number of
variables p the empirical estimate of the covariance matrix !̂
cannot be inverted. Furthermore, also in the case when q > p,
such a model has p(p + 3)/2 parameters and this might be an
overfitting solution describing noise instead of the underlying
relationships between the variables resulting in poor predictive
power [13,51]. Indeed, we shall see in the following that,
when uncertainty is large (q small), models with a smaller
number of parameters can have stronger predictive power and
can better describe the statistical variability of the data [52].
Here, we consider a parsimonious modeling that fixes only
a selected number of second moments and leaves the others
unconstrained. This corresponds to model the multivariate
distribution by using a sparse inverse covariance where the
unconstrained moments are associated with zero coefficients
in the inverse. Let us note that this in turn implies zero partial
correlation between the corresponding couples of variables.

C. Sparse inverse covariance from decomposable information
filtering networks

From Eq. (2) it follows that, in the case of the multivariate
normal distribution, the network G coincides with the structure
of nonzero coefficients, Ji,j in Eq. (3) and their values can be
computed from the local inversions of the covariance matrices
associated with the cliques and separators, respectively [1]:

Ji,j =
∑

C s.t. {i,j}∈C

(
!−1

C
)
i,j

−
∑

S s.t. {i,j}∈S
(k(S) − 1)

(
!−1

S
)
i,j

,

(4)

and Ji,j = 0 if {i,j} are not both part of a common clique.

This is a very simple formula that reduces the global
problem of a p × p matrix inversion into a sum of local
inversions of matrices of the sizes of the cliques and separators
(no more than 3 and 4 in the case of TMFG graphs [48,53]).
This means that, for TMFG graphs, only four observations
would be enough to produce a nonsingular global estimate of
the inverse covariance. An example illustrating this inversion
procedure is provided in Fig. 3.

D. Construction of the maximum likelihood network

We are now facing two related problems: (1) how to
choose the moments to retain and (2) how to verify that the
parsimonious model is describing well the statistical properties
of the system of variables. The solutions of these two problems
are related because we aim to develop a methodology that
chooses the nonzero elements of the inverse covariance in
such a way as to best model the statistical properties of the
real system under observation. In order to construct a model
that is closest to the real phenomenon we search for the set of
parameters, J, associated with the largest likelihood, i.e., with
the largest probability of observing the actual observations:
{x1,1,...,x1,q}, {x2,1,...,x2,q}...{xp,1,...,xp,q}. The logarithm of
the likelihood from a model distribution function, f (X)
[Eq. (3)], with parameters J, is associated to the empirical
estimate of the covariance matrix, !̂, by [54]

lnL(J) = q

2
[ln det J − Tr(!̂J) − p ln(2π )]. (5)

The network G that we aim to discover must be associated
with largest log-likelihood and it can be constructed in a greedy
way by adding in subsequent steps elements with maximal
log-likelihood. In this paper we propose two constructions:
(1) the maximum spanning tree (MST) [56], which builds a
spanning tree which maximizes the sum of edge weights, and
(2) a variant of the TMFG [48], which builds a planar graph
that aims to maximize the sum of edge weights. In both cases
edge weights are associated with the log-likelihood. One can
show that for all decomposable graphs, following Eq. (4),
the middle term in Eq. (5) is Tr(!̂J) = p. Hence, to maximize
log-likelihood, only log det J must be maximized; from Eq. (2),

062306-4

𝚺-1=

𝚺-1 has non-zero elements 
where edges are present 
in the information filtering 
network

• Massara, G.P. and Aste, T., 2019. Learning 
clique forests. arXiv preprint 
arXiv:1905.02266.

• Barfuss, W., Massara, G.P., Di Matteo, T. 
and Aste, T., 2016. Parsimonious modeling
with information filtering networks. Physical 
Review E, 94(6), p.062306.

• Guido Previde Massara, Tiziana Di Matteo 
and Aste, Tomaso Network filtering for big 
data: Triangulated maximally filtered graph 
Journal of complex Networks, 5 (2016) 161--
178
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Sparse modeling yields to 
larger likelihoods 

Problem 2: Results

March 30, 2021 PortfolioConstruction˙SparseMultivariateModelling

when fewer observations are used which, therefore, results in a larger gap in likelihood relative to
the maximum-likelihood covariance.
Perhaps more interestingly, fig. 2(b) reports the likelihoods obtained out-of-sample using the two

di↵erent in-sample estimates of the covariance matrix. The first observation is that TMFG-LoGo
provides a substantially larger log-likelihood, especially for short estimation windows. This result
is exacerbated by the fact that when 101 observations are considered, the number of stocks is very
close to the number of observations in our samples. While the resulting covariance is still full-rank
(number of observations > number of variables), it leads to unstable estimation in the maximum-
likelihood covariance (i.e. the so-called “the curse of dimensionality”) whereas TMFG-LoGo is still
well defined. Note that there is a break y axis of the figure to allow a better inspection of the results.
The figure shows that for longer estimation windows, the out-of-sample log-likelihood computed
with the maximum-likelihood covariance tends to converge to the TMFG likelihood which, however,
a) always provides the best out-of-sample likelihood in our experiment and b) provides quite stable
likelihood values also for shorter estimation windows. We conclude that the TMFG-LoGo algorithm
does a good job at filtering the correlation structure providing higher out-of-sample likelihood and
stable results with shorter estimation windows, confirming the results with stationary time series
previously reported in (Barfuss et al. 2016)

(a) Likelihood comparison in-sample (b) Likelihood comparison out-of-sample. Note
the y axis break to fit the scale for 101 days
estimation window.

Figure 2.: Log Likelihood computed in sample and out of sample. Both the likelihood
computed using the maximum likelihood and the TMFG covariances decrease in
sample as the sample size increases. The maximum likelihood covariance delivers
by construction the highest likelihood, but the TMFG likelihood tracks it closely.
In test, instead, the TMFG covariance always attain the highest likelihood and
delivered good results also when the number of observations becomes close to the
number of variables.

4.2. Impact of precision matrix estimate on optimal portfolios

We now address empirically the question of what is the impact of di↵erent parameter estimates
on portfolios weights and performances, when these parameters are used as inputs in the portfolio
optimization problem in eq. 2. Having focused our attention on the minimum variance portfolio on
the e�cient frontier, we report in Figure 3 the realized standard deviation of portfolios obtained
using the same parameters which provided the log-likelihood displayed in Figure 2. The chart
shows that, overall, the out-of-sample portfolio variance decreases as the likelihood increases up
until when 750 observations are used. This is coherent with respect to the likelihood results that
reported, indeed, increasing likelihoods for the same estimation windows. In particular, for shorter
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To stress the general validity of our analysis for other elliptical distributions, we repeated the
experiments discussed in Section 3 considering the t-student generator.

Assuming a Student - t distribution of the log returns, the log likelihood (Eq. A5) is:

lnLStudent =
ln |J |
2

� n+ ⌫

2
ln

✓
1 +

d2

⌫ � 2

◆
(A6)

where n is the sample size and ⌫ is the degree of freedom. Figure 1(a) reports the likelihood
comparison for the same resamplings as in Figure 2 but using a student-t log likelihood as in
Eq. A6. Here we used n = 500 observations (i.e. the out-of-sample size) and ⌫ = 3. We verified
that this findings are robust across di↵erent degrees of freedom in the range ⌫ = [2.1, 4].

(a) Log likelihood assuming a t-student distribution of
log returns.

Figure A1.: Out-of-sample log likelihood likelihood computed using the maximum likeli-
hood and the TMFG covariances. These results are coherent with the findings related to
the Normal distribution presented in Section 4.1

Appendix B: Properties of Elliptical Distributions

In this section we recall some useful properties of Elliptical Distribution which we referred to in
our discussion and particularly in Section A.

Property 1 (Distribution Definition) Consider an n-dimensional random vector X =
(X1, ..., Xn). X has a multivariate elliptical distribution with location parameter µ and dispersion

parameter ⌦,written as X ⇠ E(µ,⌦) if its characteristic function � can be expressed as:

�X(w) = E(eiwX) = eiwµ 

✓
1

2
w⌦wT

◆
, (B1)

for some location parameter µ 2 R1⇥n
, positive-definite dispersion matrix ⌦ 2 Rn⇥n

and for some

function  (·) : [0,1) ! R such that  
�Pn

i=1w
2
i

�
is a characteristic function, which is called

characteristic generator. If X ⇠ E(µ,⌦) and if its density fX(X) exists, it is of the form defined

in Eq. A1.
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Likelihood comparison between models with full covariance (max likelihood) 
and sparse covariance (LoGo)

March 30, 2021 PortfolioConstruction˙SparseMultivariateModelling

Figure 1.: Training and Testing scheme. We randomly sample the ending date of
the training period, the ‘trading day’. We then estimate the model parameters con-
sidering di↵erent training windows using observations up to the randomly selected
trading day. The following 500 observations are used for testing.

the optimal weights and portfolio characteristics. To this extent, we considered the standard,
unconstrained Markowitz optimization problem described in Section 2.1. This is done to avoid any
bias coming from constraints in our analysis and to keep the framework as plain as possible. We
focus therefore our analysis on the minimum variance portfolio, that is the e�cient portfolio that
minimizes the expected variance. To obtain the solution for the minimum variance portfolio, the
portfolio optimization problem in eq. 2 rewrites:

min
W

�2
p = W⌃W T

s.t. W = 1,
(4)

which gives the optimal, minimum variance weights:

W ⇤
min = c ⌃�1, (5)

where c = 1
T⌃�1 is a normalization constant. Considering the estimation scheme described

above and outlined in fig. 1, the estimated covariance matrices are used as inputs in the minimum
variance optimal portfolio, eq. 5, to compare the di↵erent log-likelihood levels obtained out-of-
sample and the corresponding e↵ects on portfolio performances.

4. Results

4.1. Likelihood Comparison

Figure 2 reports the average log-likelihood for the train data (fig. 2(a)) and for the test data
(fig. 2(b)) computed across 100 resamplings. The larger the log-likelihood is, the better the pa-
rameters ✓ are at describing the data, for the assumed model. Fig. 2(a) shows that, as expected
and by definition, the maximum-likelihood estimate of the covariance matrix provides a higher
in-sample likelihood as compared to the TMFG covariance, although the latter tracks quite closely
the maximum-likelihood. Also, one might observe that the likelihood is strictly decreasing with the
number of observations included in the estimation window. Indeed, as the number of observations
decreases relative to the parameters, the model overfits the sample yielding larger in-sample like-
lihoods. Filtering the covariance matrix and reducing the number of parameters clearly limits the
overfitting potential of the model as shown by the lower levels of likelihood attained by TMFG

6

Mean likelihoods from 100 tests computed form a randomly chosen trade 
day and with random sampling of 100 stocks over 342 US stocks over the 
period 1997-2016 

BARFUSS, MASSARA, DI MATTEO, AND ASTE PHYSICAL REVIEW E 94, 062306 (2016)
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FIG. 5. Demonstration that LoGo sparse inverse covariance
represents the dependency structure better than the complete inverse
covariance. The figure reports comparisons between log-likelihood
for models constructed by using sparse inverse LoGo-TMFG, LoGo-
MST and the complete inverse of the empirical covariance matrix
(Inv. Cov.). These measures are on p = 300 off-sample test data
series of different lengths q varying from 20 to 2000. The inverse
matrices are computed on training data sets of the same length. Data
are log returns sampled from 342 stocks prices of equities traded on
the U.S. market during the period 1997–2012. The statistics is made
stationary by random shuffling the time order. Symbols correspond to
averages over 100 samples generated by picking at random 300 series
over the 342 and assigning training and testing sets by choosing at
random two nonoverlapping time windows of length q, the shaded
bands are the 95% quantiles. The line on the top, labeled “MAX,” is
the theoretical maximum, which is the log-likelihood obtained from
the inverse covariance of the testing set.

1997 to 2012 [9]). We build 100 different data sets by creating
stationary time series of different lengths selecting returns
at random points in time and randomly picking p = 300
series out of the 342 in total. Each data set was divided
into two temporal nonoverlapping windows with q elements
constituting the “training set” and other q elements the “testing
set.”

In order to quantify the goodness of the methodology we
computed the log likelihood of the testing data set using
the inverse covariance estimates from the training set. Larger
log-likelihood indicate models that better describe the testing
data. Figure 5 reports the results for time series of different
lengths from q = 25 to q = 2000. Smaller values of q mean
shorter number of observations in the training data set used
to construct the model and therefore correspond to larger
uncertainties. Note that, the green upward triangles in Fig. 5,
denoted with “MAX,” are the theoretical maximum from the
inverse sample covariance matrix calculated on the testing set,
which is reported as a reference indicating the upper value for
the attainable likelihood. Let us first observe from this figure
that, for these stationary financial time series study, LoGo-
TMFG outperforms the likelihood from the inverse covariance
solution J = !̂

−1
(denoted with “Inv. Cov.” in Fig. 5). For

q < p = 300 the inverse covariance is not computable and
therefore comparison cannot be made; when q > p = 300,
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FIG. 6. Demonstration that LoGo sparse modeling has better
performances than Glasso models with same sparsity. This figure
reports the same log-likelihood as described in the caption of
Fig. 5 compared with log-likelihood from state-of-the-art Glasso
"1 penalized sparse inverse covariance models (cross validated,
G-Lasso-CV, and of the same sparsity of TMFG, G-Lasso-Sp) and
Ridge "2 penalized inverse model (Ridge).

the inverse covariance is computable but it performs very
poorly for small sample sizes q ∼ p becoming comparable
to LoGo-TMFG only after q ∼ 1500 with both approaching
the theoretical maximum at q → ∞. Note that also LoGo-
MST outperforms the inverse covariance solution in most of
the range of q. We then compared the log-likelihood from
LoGo-MST and LoGo-TMFG sparse inverse covariance with
state-of-the-art Glasso "1-norm penalized sparse inverse co-
variance models (using the implementation by Ref. [57]) and
Ridge "2-norm penalized inverse model. Glasso method de-
pends on the regularization parameters which were estimated
by using two standard methods: (i) G-Lasso-CV uses a twofold
cross validation method [58]; (ii) G-Lasso-Sp fixes the regu-
larization parameter to the value that creates in the training set
a sparse inverse with sparsity equal to LoGo-TMFG network
[3(p − 2) parameters]. Ridge inverse penalization parameter
was also computed by cross validation method [58]. Figure 6
reports a comparison between these methods for various values
of q. We can observe that LoGo-TMFG outperforms the Glasso
methods achieving larger likelihood from q > 100. Results
are detailed in Table I, where we compare also with the null
model (“NULL”), which is a completely disconnected network
corresponding to a diagonal J.

LoGo models can achieve better performances than Glasso
models with fewer coefficients and are computationally more
efficient. This is shown in Fig. 7, where we report the
comparison between the number of nonzero off-diagonal
coefficients in the precision matrix J in Glasso-CV and LoGo
models. These results show that the number of coefficients for
G-Lasso-CV is 3 to 6 times larger than for LoGo-TMFG, while
the computation time for LoGo-TMFG is about three orders of
magnitude smaller than the computation time for G-Lasso-CV.
Note that LoGo-TMFG has a constant number of coefficients
equal to 3p − 6 corresponding to the number of edges in the
TMFG network. A further comparison between performance,
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random two nonoverlapping time windows of length q, the shaded
bands are the 95% quantiles. The line on the top, labeled “MAX,” is
the theoretical maximum, which is the log-likelihood obtained from
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larization parameter to the value that creates in the training set
a sparse inverse with sparsity equal to LoGo-TMFG network
[3(p − 2) parameters]. Ridge inverse penalization parameter
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reports a comparison between these methods for various values
of q. We can observe that LoGo-TMFG outperforms the Glasso
methods achieving larger likelihood from q > 100. Results
are detailed in Table I, where we compare also with the null
model (“NULL”), which is a completely disconnected network
corresponding to a diagonal J.

LoGo models can achieve better performances than Glasso
models with fewer coefficients and are computationally more
efficient. This is shown in Fig. 7, where we report the
comparison between the number of nonzero off-diagonal
coefficients in the precision matrix J in Glasso-CV and LoGo
models. These results show that the number of coefficients for
G-Lasso-CV is 3 to 6 times larger than for LoGo-TMFG, while
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Note that LoGo-TMFG has a constant number of coefficients
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LoGo sparse models have larger likelihood 
than Glasso models, they can be computed 
in a fraction of computational time and have 
a more meaningful structure

• Barfuss, W., Massara, G.P., Di Matteo, T. and Aste, 
T., 2016. Parsimonious modeling with information 
filtering networks. Physical Review E, 94(6), 
p.062306. 

• Procacci, P.F. and Aste, T., 2021. Portfolio 
Optimization with Sparse Multivariate Modelling. arXiv
preprint arXiv:2103.15232.
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• Model calibration needs observation sets that span long periods of time 
• Markets change over time
• Models based on the past are not representing well the future  
• The past cannot be treated as a consistent dataset 
• Markets have both ‘cyclical’ dynamics and abrupt changes
• Some market states might repeat over time and others instead appear as 

new and unique

Non-stationarity

Problem 3: setting

• Musmeci, N., Aste, T. & Di Matteo, T. Interplay between past market 
correlation structure changes and future volatility outbursts. Sci 
Rep 6, 36320 (2016). https://doi.org/10.1038/srep36320

• Aste, T., Shaw, W. and Di Matteo, T., 2010. Correlation structure and 
dynamics in volatile markets. New Journal of Physics, 12(8), p.085009.

https://doi.org/10.1038/srep36320
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Time-clustering: Inverse 
Covariance Clustering (ICC)

Problem 3: solution

• Market states are represented in terms of a mean 𝜇 and a 
covariance 𝚺

• Multivariate observations at each time-step can be gathered in a 
cluster together with other ‘similar’ observations 

• Similarity is measured with a gain function
• Time-fragmentation must be penalized

• Procacci, P.F. and Aste, T., 2019. 
Forecasting market states. Quantitative 
Finance, 19(9), pp.1491-1498.
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Time-clustering: market states definition & 
gain function

Problem 3: implementation

A PREPRINT - APRIL 19, 2021

Correlation (DCC) model [27]. However, most of these models suffer from curse of dimensionality and can only
apply to limited number of assets. In 2017, Hallac et al. proposed Toeplitz Inverse Covariance Clustering (TICC) [28]
algorithm originally for electric vehicles. It classifies states based on a likelihood measures of short subsequences of
observations and corresponding sparse precision matrix. After clustering, precision matrix of each state is under a
Toeplitz constraint. Inspired by TICC, Procacci and Aste proposed Inverse Covariance Clustering (ICC) [8] in 2020
for clustering single observations with enforced temporal consistency by penalizing switching between states. One
main advantage of ICC compared to TICC is its flexibility in similarity measures selection. The original paper also
reports out the different market sensitivity with different clustering distance, likelihood (pre- and post- crisis), Euclidean
distance (bull and bear) and Mahalanbois distance (mixture of above).

The clustering procedure of ICC starts of by randomly assigning multivariate observations into K number of clusters.
Based on the initial segmentation, we compute the corresponding sparse precision matrix Jk, and the sample mean µk

for each cluster. Then, we re-assign points to the cluster by the smallest penalized distance,

Mt,k = Dt,k + �1{Kt�1 6= k}, (1)

where Dt,k is a distance measure of cluster k at time t which is obtained through Jk and µk; � is the switch penalty
parameter enforcing temporal consistency; Kt�1 is the cluster assignment of the last point. Above procedures iterates
until convergence, and Viterbi algorithm [29, 30] is used for computational efficiency.

Information filtering networks, providing ICC with the underlying sparse covariance matrix approximation, has
extremely developed in the past few years. Its aim is to model interactions in a complex system as a network structure
of elements (vertices) and interactions (edges). This concept was first introduced by Lauritzen in 1996 [31], then
various models have been proposed and developed since the Minimum Spanning Tree (MST) [32]. To better extract
useful information in the network, Tumminello et al. [33] and Aste and Di Matteo [34] expanded the scope of studies
and demonstrated the use of planar graphs. Recent studies extent to chordal graphs [35, 36]. Research fields ranging
from finance [37] to neural systems [38] have applied this approach as a powerful tool to understand high dimensional
dependency and construct a sparse representation, including estimating sparse precision matrix. The original paper
applies Triangulated Maximally Filtered Graph (TMFG) developed by Massara et al. in 2016 [35] to obtain sparse
precision matrix. It is a more efficient and stable technique than many other implementations when few data points are
available [37, 34], e.g., GLASSO [39]. In our experiment, we incorporate Maximally Filtered Clique Forest (MFCF)
introduced by Massara and Aste in 2019 [36]. This work is a radical generalization of the previous TMFG work,
providing additional intuition and computational efficiency.

In this paper, we demonstrate the use of a novel temporal clustering method, the Inverse Covariance Clustering (ICC)
[8], as an effective means to improve traditional Markowitz model. This method classifies states through their sparse
precision matrices and expectation values. It addresses the temporal persistency of states in an unsupervised way,
providing additional efficiency, accuracy and intuitiveness to both states clustering and further portfolio optimisation.

3 Methodologies

To assess the effectiveness of our proposed methodology, we structure two sets of experiments to answer three questions
regarding underlying assumptions and compare our results against the benchmark. The first and second fundamental
assumptions consider the efficacy of market states clustering by ICC, and their off-sample temporal consistency. In the
first set of experiment, we quantify the ’goodness’ of clusters by assessing the statistical log-likelihood of different
states, which estimates the effectiveness of modelling multivariate distributions. The off-sample likelihood of each state
are compared to show that the in-sample superior state pervades in the off-sample period. Moreover, Procacci and Aste
in 2021 [9] has established a positively correlated relationship between likelihood and volatility based on Markowitz
mean-variance criterion. Our third question thus asks a more general interconnection between out-of-sample likelihood
and realized portfolio performance, e.g. returns and Sharpe Ratio in different capital markets with various optimisation
methodologies. In the second set of experiment, we backtest the realized portfolio of optimised weights generated from
each market states. The comparison indeed show the potency of the superior state, and the analysis extend the scope of
Procacci’s argument into various capital markets and optimisation methodologies.

3.1 Mean Variance Optimisation

The Mean Variance Optimisation consists a set of portfolio weights W = (w1, ..., wn) of n stocks with average returns
R = (r1, ..., rn). The original Markowitz model identifies the portfolio with the minimised variance �p for a given
portfolio expected return r̄p = E[rp], where rp = WR>. In the following experiments, however, we apply a derived
version of the original Markowitz model, which optimised on maximum Sharpe Ratio SRp = rp/�p, a risk adjusted
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Appendix A Portfolio Performance Tables

Appendix B Distances
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Appendix A Portfolio Performance Tables

Appendix B Distances

Euclidean distance measure
Dt,k = (Xt � µk)

>(Xt � µk) (8)

Normal modeling likelihood distance measure
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• Procacci, P.F. and Aste, T., 2019. Forecasting market 
states. Quantitative Finance, 19(9), pp.1491-1498.

Mahalanobis distance
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Time-clustering: algorithm

Problem 3: implementation
May 29, 2019 ForecastingMarketStates˙v3.2

Appendix A: The Viterbi algorithm

Figure A1 provides a visualization of the problem of assigning points to clusters. Based on the
parameters estimates (µk and Jk via TMFG-LoGo), we compute the Mahalanobis distance of
every multivariate observation obtaining, for each cluster k and for each observation t, a value
d2t,k = (Xt � µk)TJk (Xt � µk).

k = 1

k = 2

k = 3

…

…

…

𝑡 − 2 𝑡𝑡 − 1 …𝑇
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𝛾

𝛾
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Figure A1.: Example of two among the KT possible paths consideringK = 3 clusters
and T observations. Lt,j represents the log likelihood of the multivariate observation
at time t if assigned to cluster j. If an observation is assigned to same cluster as the
previous one, no penalty is applied, otherwise a cost weighted by the parameter �
is added.

We need to consider the best sequence of latent states which is not the set of best individual
states. In particular, if we introduce a cost parameter � that penalizes cluster switching, the
problem complexity becomes combinatorial, since we need to account for the whole sequence or
path of assignations. In particular, given K potential cluster assignment of T points (multivariate
observations), the number of potential paths grows exponentially with the length of the chain to
KT possible assignments of points to clusters. Based on a dynamic programming approach, the
Viterbi algorithm (Viterbi 1967) provides an e�cient solution with complexity O(KT ) (i.e., linear)
to this problem, searching the space of the paths and finding the most e�cient path. The Viterbi
algorithm in the convenient formulation by (Hallac et al. 2017) is sketched in 1.
A more general formulation can be implemented by describing the paths as Markov chains

and introducing a transition probability between the states. However, under the Markov chain
formalism the expression in Eq.2 for the likelihood ratio is no longer consistent because it implies
iid multivariate observations.

12

• Assigning at random time steps to 
clusters

• Estimate covariance and mean for 
each cluster (using LoGo)

• Compute gain
• Reassign entries to cluster to 

maximize gain

Use Viterbi path to make computation efficient

• Procacci, P.F. and Aste, T., 2019. 
Forecasting market states. Quantitative 
Finance, 19(9), pp.1491-1498.
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Effect of sparsification on 
portfolio performance

Optimal portfolio construction

March 30, 2021 PortfolioConstruction˙SparseMultivariateModelling

(a) Realized volatilities obtained with Maxi-
mum Likelihood covariances

(b) Realized volatilities obtained with TMFG
filtered covariances

Figure 4.: Portfolio realized volatility across resamplings for di↵erent estimation windows.
The box-plot shows the distribution of the variances obtained for 100 resampled portfolios
and the the blue line overlaid shows the average variance (i.e. the mean of the variances’
distribution).

correlations are polished. This intuition is confirmed by looking at the distribution of weights across
resamplings in Figure 6. This chart (note the di↵erent scales) shows that using the TMFG-LoGo
covariance matrix significantly improves the stability of the optimal solutions, reducing outliers and
avoiding “corner”, i.e. extreme solutions which are a typical pitfall of the unconstrained Markowitz
optimization. This results shows that the correlation coe�cient among assets plays an important
role in that for high correlation levels, the optimization procedure would prefer one stock in place
of another for slightly more appealing mean or variance features. Having filtered the correlation
structure in the TMFG-LoGo procedure, we obtained a portfolio that is much more general (hence
the anticipated larger number of Long positions) and less sensitive to single assets features given
the filtered correlation among stocks.

(a) Number of “Buy” positions. (b) Number of “Sell” positions.

Figure 5.: Comparison of Buy/Sell Active Positions. As the number of training obser-
vations increases, the optimizations delivers an increasing number “Long” positions.
This tendency is anticipated when using TMFG fiiltered covarinace which always
delivers an higher number of Long positions.

Lastly, considering the standard unconstrained optimization problem in eq. 2, both the maximum-
likelihood and the TMFGmatrices produce portfolios that are in the vast majority of cases investing
in all assets. In other words, even considering a sparse precision matrix like in the TMFG-LoGo
case, we very rarely found weights equal to zero assigned to some assets.
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estimation windows, the TMFG-LoGo covariance matrix provides portfolios with significantly lower
realized variance. Also, little changes are observed in the realized variance when observations from
101 to 750 are included, signalling that the TMFG-LoGo extract the relevant dependency links
also when few observations are available. The gap in performance tends to reduce as the number of
observations in the estimation window increases, with the TMFG-LoGo portfolios always displaying
lower volatility. However, when more than 750 daily observations are included, while the out of
sample likelihood remains flat or slightly increases, the portfolios’ variance tends to increase.

Figure 3.: Realized Standard Deviation. Increasing the estimation window and for
higher values of Likelihood (figure 2), the realized standard deviation of portfolios
decreases. Y axis break to fit the scale for 101 days estimation window..

To further investigate this pattern, we report in Figure 4 the volatilities for all 100 resamplings
and considering steps of 25 observations in the estimation windows. The figure confirms that
the TMFG-LoGo covariances delivered overall less volatile portfolios across resamplings and
estimation windows. Secondly, the figure shows that the portfolios obtain the lowest out-of-sample
variance when approximately 2 to 3 years of daily observations (450 to 700 observations) are
included in the train set. This pattern is clear for the Maximum likelihood portfolios, with
means, quintiles and outliers drifting upwards when more than 750 observations are included. The
TMFG filtered covariance regularizes and smooths this e↵ect as well, but still when more than
750 observations are included, the resulting portfolios exhibit a slightly higher variance. This is
consistent with the literature showing that longer estimation windows provide worse forecasts
in financial time series due to the regime-changing nature of financial markets (Procacci and
Aste 2019). It is also worth emphasizing that the same mean vectors are used as inputs in the
Markowitz optimization for both the TMFG-LoGo and the Maximum-Likelihood portfolios, hence
the di↵erences in performances are due solely to the di↵erent estimates of the covariance matrix.

Finally, we address the impact of sparsity on portfolio construction by analyzing what is the
e↵ect of a sparse precision matrix on the active bets obtained from an optimization procedure.
Figure 5 reports the number of Long (fig. 6(a)) and Short (fig. 6(b)) positions (i.e. positive and
negative weights assigned to the stocks in portfolio) on average across the 100 resamplings. The
first observation is that the number of long positions tends to increase as the estimation window
increases and coherently the short positions diminish accordingly. Using TMFG-LoGo precision
matrices anticipates this behavior, in that these portfolios always display a greater number of
long positions also for short estimation windows. The intuition behind this phenomenon is that
over the long term, markets tend to post positive returns and possible outliers in assets’ means and
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Lastly, considering the standard unconstrained optimization problem in eq. 2, both the maximum-
likelihood and the TMFGmatrices produce portfolios that are in the vast majority of cases investing
in all assets. In other words, even considering a sparse precision matrix like in the TMFG-LoGo
case, we very rarely found weights equal to zero assigned to some assets.
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• Procacci, P.F. and Aste, T., 2021. Portfolio 
Optimization with Sparse Multivariate Modelling. arXiv
preprint arXiv:2103.15232.

Sparse (Markowitz) portfolios constructed with sparse inverse covariances 
(LoGo-TMFG) have better performances than the ones with the full matrix

Results from 100 tests computed form a randomly chosen trade day and with random sampling of 100 stocks over 342 US 
stocks over the period 1997-2016 



4/29/21 T Aste, UCL 2019 16

Effect of sparsification on 
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The box-plot shows the distribution of the variances obtained for 100 resampled portfolios
and the the blue line overlaid shows the average variance (i.e. the mean of the variances’
distribution).

correlations are polished. This intuition is confirmed by looking at the distribution of weights across
resamplings in Figure 6. This chart (note the di↵erent scales) shows that using the TMFG-LoGo
covariance matrix significantly improves the stability of the optimal solutions, reducing outliers and
avoiding “corner”, i.e. extreme solutions which are a typical pitfall of the unconstrained Markowitz
optimization. This results shows that the correlation coe�cient among assets plays an important
role in that for high correlation levels, the optimization procedure would prefer one stock in place
of another for slightly more appealing mean or variance features. Having filtered the correlation
structure in the TMFG-LoGo procedure, we obtained a portfolio that is much more general (hence
the anticipated larger number of Long positions) and less sensitive to single assets features given
the filtered correlation among stocks.

(a) Number of “Buy” positions. (b) Number of “Sell” positions.

Figure 5.: Comparison of Buy/Sell Active Positions. As the number of training obser-
vations increases, the optimizations delivers an increasing number “Long” positions.
This tendency is anticipated when using TMFG fiiltered covarinace which always
delivers an higher number of Long positions.

Lastly, considering the standard unconstrained optimization problem in eq. 2, both the maximum-
likelihood and the TMFGmatrices produce portfolios that are in the vast majority of cases investing
in all assets. In other words, even considering a sparse precision matrix like in the TMFG-LoGo
case, we very rarely found weights equal to zero assigned to some assets.
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(a) Distribution of optimal weights using
Maximum-Likelihood covariance

(b) Distribution of optimal weights using
TMFG covariance

Figure 6.: Optimal Weights Distribution. Using the TMFG filtered covariance in
the optimization provides stable weights as compared to the maximum-likelihood
covariance, avoiding “corner solutions” and enhancing diversification.

4.3. Non Stationarity

From the results discussed in previous section and shown in Figure 3 and Figure 2, we found
that the portfolio performances improve coherently with the likelihood up until approximately 3
years of observations are used in the train set to estimate the models parameters. However, when
more onservations are included in the train set, the likelihood of the parameters detaches from the
portfolio performances and we speculate that this is due to the role of nonstationarity. To further
investigate this phenomenon, Figure 7 reports the likelihood corresponding to each out-of-sample
observation in our experiment.

(a) Mean Likelihood for each observation across
resamplings. Comparison of likelihoods obtained
when 125, 750 and 1500 days are used in the train
set.

(b) Boxplot of likelihoods representing the quartiles
and min-max levels for each observation across re-
samplings, having removed outliers. The plot is for
750 days train set (blue plot on the left).

Figure 7.: Out-of-sample likelihood measured observation-by-observation.

Figure 7(a) shows the average likelihood across 100 resamplings for each out-of-sample observa-
tion. We note that when shorter estimation windows are used to estimate the models’ parameters
(i.e. 125 days) the likelihood is higher in the days immediately following the estimation window, but
tends to rapidly decrease as the observations depart from the training window. Larger estimation
windows (i.e. 750 or 1,500 days) instead, lead to a more stable likelihood in the long run, but at
the cost of a lower likelihood for the obervations closer to the estimation set. Figure 7(b) shows the
observation-wise box-plot of the likelihood computed across the resamplings when 750 observation
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Results from 100 tests computed form a randomly chosen trade day and with random sampling of 100 stocks over 342 US 
stocks over the period 1997-2016 

Sparse (Markowitz) portfolios constructed with sparse inverse covariances 
(LoGo-TMFG) have lower negative weights and narrower weight distribution 

• Procacci, P.F. and Aste, T., 2021. Portfolio 
Optimization with Sparse Multivariate Modelling. arXiv
preprint arXiv:2103.15232.
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topological penalize.

Figure 3.: Train and test log likelihood observation-wise using TMFG (red line) and
Ridge (black line) precision matrices. The green vertical line divides train and test
set. Ridge peaks reach values outside the range up to 320.

Train set
Average 5thpercentile 95thpercentile

LRidge 41.70 2.19 188.85
LTMFG 26.71 26.53 27.22

Test Set
Average 5thpercentile 95thpercentile

LRidge 8.08 1.39 27.64
LTMFG 26.55 26.44 26.73

Table 3.: TMFG and Ridge log likelihood metrics - means, 5th and 95th percentiles
- computed in train (top panel) and test (bottom panel) set. TMFG and Ridge
precision matrices are estimated using q = 500 observations.

4. Forecasting

In the second experiment we used our methodology to forecast future states of the market form pre-
vious observations. To this end, we used the first 65% of the data (from 02/01/1995 to 05/02/2009)
as train set from which we extracted the two referential precision matrices and means (J1, µ1) and
(J2, µ2) (note they are di↵erent form the ones of the first experiment in which we used the en-
tire dataset instead). We then forecasted the probability that, given an observation at time t, the
observation at a following time t + h would belong to state k. This is achieved by performing a
logistic regression using the log likelihood ratio of the two clusters (Neyman and Pearson 1933)
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Modeling with sparse (LoGo) covariance 
is more consistent  across time than 
modeling with full (ridge) estimator

train                        test Models (LoGo) trained on short 
estimation windows perform better on 
short out-of sample periods

750d estimation set

Likelihood decreases with 
distance from the train set 
and variability increases

• Procacci, P.F. and Aste, T., 2019. 
Forecasting market states. Quantitative 
Finance, 19(9), pp.1491-1498.

• Procacci, P.F. and Aste, T., 2021. Portfolio 
Optimization with Sparse Multivariate 
Modelling. arXiv preprint arXiv:2103.15232.

Results from 100 tests computed form a randomly chosen trade day and 
with random sampling of 100 stocks over 342 US stocks over the period 
1997-2016 

Results from 1 tests computed form a randomly 
chosen trade day and with random sampling of 100 
stocks over 2490 US RIY index stocks traded 
between 02/01/1995 and 31/12/2015 
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Figure 1: Market states obtained through the clustering algorithm described in Section 3.4. The y-axis
reports the average price across the market (daily data) and the colors represent the six clusters.

period. Specifically, in the top plot in figure 2, the lines show that centrality increases the

response e↵ect with little influence from the grouping. Conversely, the bottom plot of figure

2 demonstrates that single nodes (blue lines) are also increasing their impact with centrality

but when grouped the opposite happens and greater centrality corresponds to smaller im-

pact (cyan lines). In these figures symbols report the average impact/response vs. average

centrality for the super-sectors. We see an overall consistency with the results for random

groupings however with the sectors being overall a bit less responsive and impactful than

the random groupings. The analyses over the market states reported in Figures 3 and 4 give

similar overall results with some significant di↵erences in di↵erent market periods. When

considering the impact scores, we see a clear increase in impact in cluster 6, both in the

single and grouped node trends. We also see this to some extent in cluster 3, but this is

limited to only some sectors. A more evident change is seen in the response scores of the

supersectors in the two periods of crisis, which are dominated by market states three and

six. In both periods of crisis, the funds sector has a lower response, with the majority of

the other sectors seeing an upward shift in response score. In all cases, the sector specific

response scores are seen to move closer to the single node and grouped node trend. Some
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• ICC clusters are 
representative of 
market states

• Different market 
periods are 
automatically 
gathered in clusters

• Example for 6 
clusters obtained 
using likelihood gain 
function Average market price with color 

showing the clusters  from FTSE 100 
and 250 indices, from January 2005 to 
August 2020.

• Isobel Seabrook, Fabio Caccioli, Tomaso Aste, An 
Information Filtering approach to stress testing: an 
applicationto FTSE markets (2021) preprint
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on portfolio performances 

Optimal portfolio construction

Portfolio optimizations:
• Markowitz's Mean Variance Optimisation 
• Sequential Least Square (SLS)
• Critical Line Algorithm (CLA)

Train Test

Classify each day observation 
into two clusters. Call ‘0’ the one 
mostly present in the last part of 
the training period

Construct portfolios for 
both cluster’s covariances
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Figure 1: The Sharpe Ratio of the first 30 days with different training length, where a) shows the relative percentage
difference between the Sparse 0 and the Full, b) shows the numerical values of the Full, Sparse, Sparse 0 and 1.

4.1 Log-likelihood

After selection of parameters, we conduct experiments and present the log-likelihood results described in equation
(9) with the 30-day result window in Figure 2. Three subplots illustrate log-likelihood in US, China and UK markets,
where each bar represents the percentage increase of the Sparse State 0 (green) or 1 (red) with respect to the Full in
each day. A negative percentage increase, on the contrary, means how much the Full outperforms Sparse State 0 or 1 in
the given time.

In all three markets, it is obvious to observe the majority green bars lay in the positive domain, which shows Sparse
0 has larger log-likelihood than the Full in most of the days within the window. Such gain in log-likelihood could
possibly be yielded from clustering and sparsity introduced in our methodology. To investigate further and eliminate the
contributing factor from sparsity, we plot the Sparse 1 against Full (red bars) side-by-side for comparison. Since both
Sparse 0 and 1 receive bonus log-likelihood from sparsity, the difference between the Sparse 0 and 1 depicts the sole
effect of clustering. Although the magnitude in each market varies, the red bars are normally distributed in the negative
domain, opposite to the green bars. This result clearly show the effectiveness of clustering, as the difference between
the two sparse states resulted from clustering is definitely more significant than the contribution from sparsity.

Maximum likelihood distance in the ICC separates the in-sample time-series points into high likelihood and low
likelihood clusters, and our results in Figure 2 has proven such separation continues to exist in the off-sample period.
This extension not only manifests the existence of general internal market states, but also suggests a temporal consistency
with certain predictability, which answers a key underlying assumption in our integrated algorithm. Since the clustering
process acts like a filtering pre-process between optimisation, universality of market states provides Markowitz model
with additional global knowledge instead of local bias in the training period. Hence, as a nature progression, we are
presenting and discussing the portfolio performance in the upcoming section.

4.2 Portfolio Performance

Here we exhibit optimised portfolio performance matrices of the first 30 days in the state Market, Full, Sparse, Sparse
State 0 and 1 in Table 1. In addition, we include the portfolio result tables of the first 10, 20 ,100 days in the Appendix.
A for reference. We The state Market represents the performance of holding all assets with equal weighting. For
universality, we conduct the experiments and report results with three different optimisation solving methodologies,
including Sequential Least Square (SLS), Critical Line Algorithm (CLA) and Matrix Multiplication (MM), in all three
major capital markets. The annualized return, the volatility and the Sharpe Ratio are selected for presentation with
corresponding 5th and 95 percentile. We bold-face the maximum Return, Sharpe Ratio and minimum Volatility to
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Yuanrong Wang & TA, Riding the Market Waves: Dynamic Portfolio 
Optimization with Inverse Covariance Clustering, 2021 preprint

Chose 2 years

Markets:
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129 Chinese HS300 stocks

Results are means for 
100 samples with 100 
random stocks 
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Market Solver State Return (%) (5,95)th
percentile

Volatility (5,95)th
percentile

Sharpe (5,95)th
percentile

NASDAQ SLS Market 0.13 (-112,137) 0.224 (0.154,0.428) 0.736 (-2.4,7.0)
NASDAQ SLS Full 6.73 (-105,113) 0.256 (0.164,0.745) 0.672 (-3.0,5.0)
NASDAQ SLS Sparse 5.92 (-135,120) 0.235 (0.155,0.743) 0.834 (-3.2,5.5)
NASDAQ SLS Sparse 0 14.12 (-52,116) 0.220 (0.124,0.784) 1.340 (-2.6,5.6)
NASDAQ SLS Sparse 1 -11.21 (-169,86) 0.272 (0.165,0.741) -0.078 (-3.9,3.3)

NASDAQ CLA Market 0.13 (-112,137) 0.224 (0.154,0.428) 0.736 (-2.4,7.0)
NASDAQ CLA Full 7.22 (-105,113) 0.255 (0.165,0.715) 0.692 (-3.0,5.0)
NASDAQ CLA Sparse 7.12 (-135,120) 0.234 (0.154,0.736) 0.880 (-3.2,5.5)
NASDAQ CLA Sparse 0 14.00 (-61,116) 0.214 (0.144,0.712) 1.409 (-2.5,6.2)
NASDAQ CLA Sparse 1 -11.83 (-146,78) 0.263 (0.154,0.797) 0.011 (-4.1,3.7)

NASDAQ MM Market 0.13 (-112,137) 0.224 (0.154,0.428) 0.736 (-2.4,7.0)
NASDAQ MM Full -1.34 (-123,101) 0.210 (0.144,0.666) 0.705 (-3.6,6.5)
NASDAQ MM Sparse -1.92 (-125,97) 0.212 (0.146,0.672) 0.656 (-3.6,6.4)
NASDAQ MM Sparse 0 0.41 (-111,98) 0.208 (0.141,0.664) 0.829 (-3.5,6.6)
NASDAQ MM Sparse 1 -6.62 (-128,64) 0.224 (0.148,0.689) 0.445 (-3.9,5.7)

FTSE SLS Market -0.68 (-69,64) 0.128 (0.100,0.252) 1.039 (-4.2,6.8)
FTSE SLS Full 5.02 (-56,79) 0.129 (0.106,0.242) 1.611 (-4.8,8.0)
FTSE SLS Sparse 6.07 (-53,73) 0.117 (0.105,0.208) 1.736 (-4.6,9.1)
FTSE SLS Sparse 0 14.57 (-42,74) 0.107 (0.082,0.206) 2.607 (-5.9,7.6)
FTSE SLS Sparse 1 2.27 (-88,66) 0.124 (0.111,0.225) 1.193 (-5.9,7.6)

FTSE CLA Market 10.14 (-86,40) 0.119 (0.084,0.225) 3.390 (-10.3,23.0)
FTSE CLA Full 11.22 (-79,35) 0.116 (0.108,0.264) 3.186 (-9.3,21.7)
FTSE CLA Sparse 11.23 (-73,36) 0.118 (0.973,0.266) 3.299 (-9.5,22.7)
FTSE CLA Sparse 0 12.07 (-73,37) 0.111 (0.077,0.272) 3.437 (-9.0,22.2)
FTSE CLA Sparse 1 9.31 (-76,39) 0.119 (0.087,0.265) 2.960 (-8.9,21.3)

FTSE MM Market 10.14 (-86,40) 0.119 (0.084,0.225) 3.389 (-10.3,23.0)
FTSE MM Full 15.59 (-47,37) 0.119 (0.087,0.225) 2.964 (-6.9,17.6)
FTSE MM Sparse 13.78 (-38,22) 0.110 (0.072,0.256) 3.261 (-9.2,18.0)
FTSE MM Sparse 0 32.01 (-12,61) 0.101 (0.071,0.181) 5.378 (-6.4,23.2)
FTSE MM Sparse 1 -7.47 (-69,23) 0.118 (0.095,0.246) 0.916 (-11.2,16.4)

HS300 SLS Market 19.61 (-91,165) 0.217 (0.113,0.511) 1.541 (-3.3,6.0)
HS300 SLS Full 20.02 (-127,168) 0.238 (0.164,0.423) 1.263 (-4.0,6.3)
HS300 SLS Sparse 21.91 (-94,163) 0.229 (0.152,0.387) 1.530 (-4.1,7.1)
HS300 SLS Sparse 0 30.60 (-78,182) 0.215 (0.125,0.383) 1.925 (-3.0,6.5)
HS300 SLS Sparse 1 3.43 (-121,135) 0.255 (0.144,0.557) 0.584 (-3.9,5.5)

HS300 CLA Market 19.61 (-91,165) 0.217 (0.113,0.511) 1.541 (-3.3,6.0)
HS300 CLA Full 20.02 (-127,168) 0.238 (0.166,0.423) 1.267 (-4.0,6.3)
HS300 CLA Sparse 21.91 (-94,163) 0.229 (0.155,0.383) 1.530 (-4.1,7.1)
HS300 CLA Sparse 0 31.90 (-54,165) 0.213 (0.122,0.514) 2.217 (-2.3,7.8)
HS300 CLA Sparse 1 4.99 (-110,138) 0.246 (0.145,0.437) 0.606 (-4.2,6.0)

HS300 MM Market 19.61 (-91,165) 0.213 (0.113,0.511) 1.541 (-3.3,6.0)
HS300 MM Full 16.20 (-77,139) 0.204 (0.115,0.466) 1.179 (-3.7,6.1)
HS300 MM Sparse 16.92 (-79,143) 0.205 (0.112,0.463) 1.168 (-3.7,6.3)
HS300 MM Sparse 0 18.73 (-78,150) 0.201 (0.111,0.461) 1.301 (-3.5,6.1)
HS300 MM Sparse 1 13.93 (-80,130) 0.208 (0.114,0.462) 0.992 (-3.7,5.9)

Table 1: Average Return, Volatility and Sharpe Ratio of the first 30 days with corresponding 5th and 95th percentile.
Bold-face in Return, Volatility and Sharpe Ratio indicates the optimal state in each market solver combination, while
highlights in 5th Return and 95th Volatility showcase the extreme behaviours (excluding the state Market). The state
Market represents an equally weighted unoptimised portfolio, and using different solvers does not change the result
matrices.
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Market Solver State Return (%) (5,95)th
percentile

Volatility (5,95)th
percentile

Sharpe (5,95)th
percentile

NASDAQ SLS Market -5.10 (-171,206) 0.221 (0.14,0.4) 1.159 (-8.7,12.5)
NASDAQ SLS Full 0.62 (-192,190) 0.250 (0.13,0.57) 1.301 (-5.4,10.1)
NASDAQ SLS Sparse -1.12 (-160,223) 0.225 (0.13,0.51) 1.559 (-7.4,10.3)
NASDAQ SLS Sparse 0 12.60 (-144,174) 0.205 (0.11,0.49) 2.432 (-5.0,12.6)
NASDAQ SLS Sparse 1 -22.98 (-181,218) 0.256 (0.14,0.59) -0.083 (-8.7,7.8)

NASDAQ CLA Market -1.67 (-171,208) 0.218 (0.14,0.4) 1.266 (-8.7,12.5)
NASDAQ CLA Full 4.34 (-192,198) 0.249 (0.13,0.57) 1.362 (-5.4,10.1)
NASDAQ CLA Sparse 2.95 (-160,223) 0.224 (0.13,0.51) 1.640 (-7.4,10.3)
NASDAQ CLA Sparse 0 20.17 (-169,171) 0.210 (0.12,0.36) 2.646 (-5.0,14.2)
NASDAQ CLA Sparse 1 -26.10 (-256,144) 0.257 (0.14,0.67) -0.350 (-6.5,6.5)

NASDAQ MM Market -5.39 (-171,206) 0.217 (0.14,0.4) 1.055 (-8.7,12.5)
NASDAQ MM Full -3.05 (-228,196) 0.200 (0.12,0.43) 1.023 (-6.5,12.1)
NASDAQ MM Sparse -4.45 (-231,196) 0.202 (0.12,0.45) 0.946 (-6.6,11.8)
NASDAQ MM Sparse 0 0.51 (-229,195) 0.202 (0.12,0.45) 1.194 (-7.1,12.6)
NASDAQ MM Sparse 1 -8.72 (-225,192) 0.210 (0.13,0.45) 0.617 (-7.1,11.1)

FTSE SLS Market 2.72 (-161,117) 0.126 (0.07,0.34) 1.661 (-9.2,15.4)
FTSE SLS Full 4.59 (-163,116) 0.126 (0.08,0.28) 2.090 (-8.7,14.1)
FTSE SLS Sparse 4.41 (-148,108) 0.123 (0.08,0.33) 2.295 (-8.9,14.2)
FTSE SLS Sparse 0 22.57 (-111,138) 0.103 (0.07,0.22) 4.038 (-7.1,18.8)
FTSE SLS Sparse 1 -10.79 (-199,118) 0.136 (0.09,0.4) 0.220 (-12.1,13.0)

FTSE CLA Market 2.72 (-161,117) 0.126 (0.07,0.34) 1.661 (-9.2,15.4)
FTSE CLA Full 4.55 (-163,116) 0.126 (0.08,0.28) 2.085 (-8.7,14.1)
FTSE CLA Sparse 4.42 (-148,108) 0.123 (0.08,0.33) 2.296 (-8.9,14.2)
FTSE CLA Sparse 0 25.08 (-111,146) 0.103 (0.07,0.21) 4.466 (-8.3,18.0)
FTSE CLA Sparse 1 -10.47 (-176,123) 0.130 (0.08,0.36) 0.228 (-11.0,13.7)

FTSE MM Market 2.72 (-161,117) 0.126 (0.07,0.34) 1.661 (-9.2,15.4)
FTSE MM Full 7.20 (-136,113) 0.122 (0.08,0.31) 1.942 (-9.0,12.6)
FTSE MM Sparse 7.03 (-149,138) 0.124 (0.07,0.32) 1.895 (-9.2,12.2)
FTSE MM Sparse 0 8.84 (-136,140) 0.122 (0.07,0.3) 2.095 (-9.2,12.8)
FTSE MM Sparse 1 5.02 (-142,137) 0.125 (0.08,0.32) 1.571 (-9.2,12.0)

HS300 SLS Market 0.83 (-228,198) 0.197 (0.1,0.6) 1.392 (-7.7,10.8)
HS300 SLS Full 18.57 (-250,216) 0.226 (0.12,0.42) 2.250 (-8.3,15.8)
HS300 SLS Sparse 13.54 (-283,252) 0.216 (0.11,0.44) 2.273 (-8.1,15.3)
HS300 SLS Sparse 0 39.53 (-165,276) 0.207 (0.11,0.42) 3.282 (-5.6,15.2)
HS300 SLS Sparse 1 -21.42 (-289,176) 0.230 (0.13,0.44) -0.126 (-8.3,7.9)

HS300 CLA Market 0.83 (-228,198) 0.197 (0.1,0.6) 1.392 (-7.7,10.8)
HS300 CLA Full 18.59 (-250,216) 0.226 (0.12,0.42) 2.252 (-8.3,15.8)
HS300 CLA Sparse 13.60 (-283,252) 0.216 (0.11,0.44) 2.278 (-8.1,15.3)
HS300 CLA Sparse 0 40.65 (-131,250) 0.208 (0.11,0.45) 3.715 (-5.3,18.8)
HS300 CLA Sparse 1 -22.63 (-331,218) 0.247 (0.12,0.58) -0.090 (-8.9,9.9)

HS300 MM Market 0.83 (-228,198) 0.197 (0.1,0.6) 1.392 (-7.7,10.8)
HS300 MM Full -0.21 (-204,217) 0.185 (0.1,0.45) 0.939 (-8.8,10.2)
HS300 MM Sparse 0.41 (-213,231) 0.185 (0.09,0.57) 0.936 (-8.7,10.1)
HS300 MM Sparse 0 3.59 (-206,212) 0.182 (0.09,0.56) 1.144 (-8.3,11.2)
HS300 MM Sparse 1 -4.45 (-219,227) 0.188 (0.09,0.45) 0.526 (-8.8,9.9)

Table 2: Average Return, Volatility and Sharpe Ratio of the first 10 days with corresponding 5th and 95th percentile.
Bold-face in Return, Volatility and Sharpe Ratio indicates the optimal state in each market solver combination, while
highlights in 5th Return and 95th Volatility showcase the extreme behaviours (excluding the state Market). The state
Market represents an equally weighted unoptimised portfolio, and using different solvers does not change the result
matrices.
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Yuanrong Wang & TA, Riding the Market Waves: Dynamic Portfolio Optimisation with Inverse Covariance Clustering, 2021 preprint
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Centre and periphery of the 
network structure have different 
risk and performances

Other contributions
pendency. In the present study we investigate a set of highly
capitalized stocks in the American Stock Exchange market
in the period ranging from 1981 to 2010 (T = 7570 market
days). Over this period of time there are 2286 equities [cor-
retto? vedi anche appendice] that have been quoted in the
market. For each market day in t 2 [�t + 1, T � �t + 1] we
investigate the behavior of a selection of N = 300 stocks with
high capitalization and that have performed well over the pre-
vious year (�t = 250 market days, see details in Materials and
Methods). Specifically, we computed correlations over a win-
dow of six months, reducing the excessive influence of remote
market shocks on present correlations by using exponential
smoothing [5] (which assigns higher weights to more recent
events and incrementally reduces weights to past events). We
then improved the estimator by computing the average corre-
lation matrix with shrinkage [6] over a period of six months
obtaining in this way a robust estimation of the correlations
over the year preceding the investment day t (see details in
Materials and Methods). Such a matrix shows a remarkable
persistence, with autocorrelation values ranging around 50%
even after one year1. This high persistence is a very impor-
tant fact implying that measurements from the past are likely
to forecast the future and the ordering of the correlations is
expected to remain rather stable. We then used these average
weighted correlations with shrinkage to construct the financial
filtered networks: MST and PMFG [2, 3, 7]. An example of
PMFG is shown in Figure 1.

We now discuss how an e�cient investment strategy can
benefit from the knowledge of such market dependency struc-
ture. In particular we built portfolios from a set of stocks
selected from the peripheral regions of the financial filtered
networks and we compared the performance of these portfo-
lios with the performance of portfolios built from a selection
of central stocks and other portfolios made with randomly se-
lected stocks or built by using other traditional methods. To
this purpose, we first must distinguish between stocks lying in
the networks’ central regions from those lying in the periph-
eries. Numerous centrality/peripherality measures have been
proposed in the literature [9, 10, 11, 12, 13]; they reflect dif-
ferent criteria and it can happen that a vertex results central
for one measure and peripheral for another. We have there-
fore adopted an ‘agnostic’ perspective by looking at some of
the most common centrality/peripherality measures (namely
Degree (D), Betweenness Centrality (BC), Eccentricity (E),
Closeness (C) and Eigenvector Centrality (EC) [13] and by
combining them in order to better identify central and pe-
ripheral stocks in the financial filtered networks. Specifically,
we constructed two hybrid centrality indices, X and Y , which
group together the rankings of the previous measures (see de-
tails in Materials and Methods). In terms of these hybrid
measures, small values of (X +Y ) are associated with central
vertices whereas large values are associated with peripheral
vertices. From the study of the variation with time of these
centrality indices we observed that central vertices are sta-
ble with a large likelihood to be persistently observed in the
center over time. Whereas peripheral vertices tend to be less
stable with a larger variability. [un po’ di piu’ e un po’ piu’
quatitativo ] We observe that, in terms of industrial sectors2,
the peripheries are mainly populated by companies belonging
to “Electric, Gas, and Sanitary Services” (representing 20%
of peripheral companies vs. 11% of all companies), “Oil and
Gas Extraction” (7.0% vs. 4.8%), “Petroleum Refining and
Related Industries” (2.3% vs. 1.7%) or “Metal Mining” (2.1%
vs. 1.0%) while the core is mainly populated by “Depository
Institutions” (14% vs. 6.4%), “Security and Commodity Bro-
kers, Dealers, Exchanges, and Services” (6.6% vs. 1.4%) or

“Holding and Other Investment O�ces” (7.8% vs. 3.0%).
These findings are consistent with the analyses in [14, 15, 16].

For each day t, we constructed the financial filtered net-
works by using the average correlations with shrinkage com-
puted over the previous year, we then selected the m most
peripheral stocks (with the largest values of X + Y ) and
built a portfolio with either uniform weights or Markowitz
weights [4], with or without short-selling (in the present
study this corresponds to a total of 7071 portfolios, with t 2
[�t+1, ..., T ��t+1]). For each portfolio we observe the re-
turns, defined as rt(⌧) = [Price(t+ ⌧)� Price(t)] /Price(t),
over a year following the investment date (⌧ 2 [1, 250]). The
performance of each investment strategy is measured by com-
puting the average r̄(⌧) and the standard deviation, s(⌧) of
the returns over the 7071 investment dates. We then used the
‘signal-to-noise ratio’, r̄(⌧)

s(⌧) , as proxy for performance: good
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Fig. 2. Comparison between the performance of di↵erent portfolios with uniform
weights (u) composed of m = 5, 10, 20, 30 stocks. The symbol ⇤ indicate port-
folios made with m most peripheral stocks (i.e. with largest X + Y ). O indicate
portfolios made with the m most central stocks (i.e. with smallest X + Y ). These
performances are compared with: (/) portfolios made of m randomly chosen stocks;
(.) portfolios made with the m stocks that have achieved the best performance over
the period preceding the investment date. The (tick line) is a ’market portfolio’ made
by taking all 300 stocks and it is the same across the four figures.
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Fig. 3. Comparison between the performance of di↵erent portfolios obtained by
solving the Markowitz problem with no short-selling (ns). Labels are the same as in
Fig.2. The baskets of stocks that are composing the portfolios are the same as in
Fig.2 but the weighting are di↵erent.

2We identify the sectors of activity through the U.S. Standard Industrial Classification codes, see
http://www.sec.gov/info/edgar/siccodes.htm

2 www.pnas.org/cgi/doi/10.1073/pnas.0709640104 Footline Author

Portfolio performance
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Fig. 5. Probability of non negative returns (expressed in per-cent values) after six months from the date when the investment was made (upper panel) and after one year
from the date when the investment was made (lower panel). The cases with uniform weights (u), Markowitz solutions with no short-selling (ns) and with short-selling (s)
are shown. Investments based on portfolios of 5, 10, 20, 30, 40 stocks selected from central (c) and peripheral (p) regions of the financial filtered graphs MST (M -c and
M -p), PMFG (P -c and P -p) and the combination of the two (MST -PMFG, i.e. MP -c and MP -p) are compared with the investment made over all the 300
stocks (MKT ).

to investments made of all 300 stocks in the market. This is
consistent with the signal to noise ratios discussed previously.

Likelihood of higher returns.We have so far established that
peripheral portfolios are exposed to lower risk than central
portfolios. In an investor’s perspective it is also important
to establish whether or not peripheral portfolios can provide
higher returns than other investments. For this purpose we
tested the hypotheses that the di↵erence between returns of
peripheral and central portfolios is positive or null. Specifi-
cally, for each day, we performed a t-test on the yearly returns
in the preceding 125 days. The result reveal that portfolios
made with peripheral stocks consistently yield to better or
equal returns than portfolios made with central stocks. Ta-
ble 2 reports the percentage of cases in which the hypothesis
is not rejected (i.e. peripheries give higher or equal returns
than centers) for di↵erent weightings and for di↵erent sizes
(m = [5, 10, 20, 30, 40]). Significance level was set at 5%.

Portfolios from other regions of the financial filtered graphs.
We also investigated other regions of the financial filtered
graphs by looking at the positions of all companies in the plane
defined by the axes (X + Y ) and (X � Y ). Specifically we in-
vestigate the four sides of the square of coordinates A = (2, 0),
B = (0, 1), C = (0, 0), D = (1,�1). In this map the ‘periph-
eral’ regions used in the previous investment strategies are
around the corner A and the ‘central’ regions lie around C.
For each side (AB, BC, CD and AD) we have selected the m
companies which lay closer to them and constructed the opti-
mal portfolios by using the same methodology described pre-
viously. We found that sides AB and AD perform better than
BC and CD but worst that the ‘peripheral’ corner A; AB per-
forms better than AD in terms of signal-to-noise returns but
worse in terms of total returns. Overall, the results are anal-
ogous to those described previously for the central/peripheral
(C/A) regions.

Discussion
We have shown that financial filtered graphs can be used
to select portfolios with lower risk and better returns than
those obtained with other traditional methods. This has
been achieved by first constructing suitable correlation matri-
ces, then building MST and PMFG financial filtered graphs
and finally establishing appropriate indices to select portfo-
lios made of stocks located in either central or peripheral re-
gions. We quantified investment performances by measuring
the ‘signal-to-noise’ ratio between average returns and their
standard deviations, by evaluating the likelihood of negative
returns and by testing the probability to obtain larger re-
turns. The results show that, consistently, portfolios built
from a selection of peripheral stocks have lower risks and bet-
ter returns than portfolios built from a selection of central
stocks. This might be the consequence of the fact that the
center of the network is more likely to be subject to sudden
perturbations due to the herd e↵ect: during periods of booms
and crashes the system gets highly correlated and investors
simultaneously rush in the same direction, buying or selling,
respectively. Hence, portfolios containing companies that are
at the center of these irrational moods are more likely to carry
larger risk. An e�cient diversification is possible if the port-
folio is composed of stocks characterized by both low corre-
lations and high expected returns’ signal-to-noise ratios. We
have shown that these securities are located in the peripheries
of the financial filtered graphs.

There is a large scope for the applicability and testing of
the present method to a variety of di↵erent domains including
FX rates. (...) Further studies will focus on the use of newly
introduced clustering methods [17] which can be used for fur-
ther distinguishing between peripheral and central stocks in
the portfolio selection. Another investigation will be dedi-
cated to verify whether the risk of a company default is uni-
formly distributed in the financial networks.

Materials and Methods

3Ordinary common shares of “Americus Trust Components (Primes and Scores)”, “Closed-end
funds” “Real Estate Investment Trusts” have been excluded from the dataset.

4 www.pnas.org/cgi/doi/10.1073/pnas.0709640104 Footline Author

Probability of negative returns

F. Pozzi, T. Di Matteo, and TA , “Spread of 
risk across financial markets: better to invest 
in the peripheries”, Scientific Reports 3 (2013) 
1665.
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Other use of network: 
portfolios from persistent 
structures

Other contributions

The sparse 
network 
clique  
structure has 
long memory 
persistence

AMZN US Equity

ANTM US Equity

AVGO US Equity

BAC US Equity
BIIB US Equity

CELG US Equity

CI US Equity

COP US Equity
CVX US Equity

EFA US Equity

GILD US Equity

GOOGL US Equity

JPM US Equity

MS US Equity

NVDA US Equity

QQQ US Equity

SLB US Equity

TXN US Equity

UNH US Equity

VEA US Equity
VWO US Equity

XOM US Equity

Fig. 3. Network representation of the ten most persistent triangular motifs in the TMFG layers for the 100 most capitalised stocks of
the NYSE.

Table 3. Motif components and Financial Times sector affiliation for the ten most persistent motifs in the NYSE’s 100 most capitalised
stocks.

Security 1 FT Sector Security 2 FT Sector Security 3 FT Sector

Biogen Inc Biopharmaceutical Gilead Sciences Inc Biopharmaceutical Celgene Corp Biopharmaceutical

UnitedHealth Group
Inc

Health Care Cigna Corp Health Care Anthem Inc Health Care

Biogen Inc Biopharmaceutical Gilead Sciences Inc Biopharmaceutical Amgen Inc Biotechnology

Bank of America Corp Financials-Banks JPMorgan Chase & Co Financials-Banks Morgan Stanley Financials-Banks

Vanguard FTSE ETF** Index ETFs MSCI EAFE ETF Index ETFs Vanguard FTSE
EFT***

Index ETFs

Invesco QQQ Trust ETF on NASDAQ* Amazon.com Inc Tech Alphabet Inc Tech

ConocoPhillips Oil & Gas Schlumberger NV Oil & Gas Exxon Mobil Corp Oil & Gas

NVIDIA Corp Technology Hardware
& Equipment

Texas Instruments Inc Technology Hardware
& Equipment

Broadcom Inc Technology Hardware
& Equipment

Chevron Corp Oil & Gas Schlumberger NV Oil & Gas Exxon Mobil Corp Oil & Gas

Chevron Corp Oil & Gas ConocoPhillips Oil & Gas Schlumberger NV Oil & Gas

* Top Holdings include Amazon, Facebook, Apple, Alphabet
** Vanguard FTSE Developed Markets Index Fund ETF Shares
*** Vanguard FTSE Emerging Markets Index Fund ETF Shares

5

Fig. 2. Decay of triangular clique faces, separators and clique motifs overlap between layers for 100 NYSE stocks, as a function of time
interval dt = [0,900] (average over 200 simulations). The two power-law regimes are identified by the minimum MSE sum of the fits.

The plot in Figure 2 is analogous to that in Figure 1, but with the number of persistent motifs scaled by the total number
of motifs in an N-nodes TMFG. This corresponds to the number of motifs in the first temporal layer. Figure 2 provides a
better visual comparison of decay rates, with tetrahedral ?? cliques having a higher decay rate, as they are composed of
more edges which need to persist simultaneously.

In Figures 1, 2 we notice that the minimum MSE is achieved at the transition point between the decay phase and the
plateau. The transition point can therefore be identified by minimising a standard fit measure.

We now consider how the decay exponent behaves in different markets. Table 1 compares the decay exponents for
cliques, triangular motifs and clique separators in the NYSE, German Stock Exchange, Italian Stock Exchange and Israeli
Stock Exchange.

Table 1. Exponents for the decay power law regime identified by MSE in different sample markets. The analysis refers to 100 randomly
selected stocks over time intervals dt = [0,900].

Market Clique Exponent Triangular Motif Exponent Clique Separator Exponent

NYSE -0.392 -0.493 -0.245
Germany -0.792 -0.598 -0.381
Italy -0.785 -0.811 -0.174*
Israel -1.024 -0.866 -0.728

* Result compromised by regimes not well identified for motif decay in large systems (⇡ 100 stocks)

We notice from the results in Table 1 that the NYSE, which is clearly the most developed and liquid stock market, has
the lowest decay exponent (in modulus) for both cliques and triangles. This indicates that its correlations are more stable

3

Motif persistence in NYSE

• Turiel, J.D., Barucca, P. and Aste, T., 2020. Simplicial 
persistence of financial markets: filtering, generative 
processes and portfolio risk. arXiv preprint 
arXiv:2009.08794. 

• Turiel, J.D. and Aste, T., 2019, December. Sector 
Neutral Portfolios: Long memory motifs persistence in 
market structure dynamics. In International Conference 
on Complex Networks and Their Applications (pp. 573-
585). Springer, Cham.

Experiments: 100 stocks NYSE, Germany, Italy, Israel, between 2012 and 2018 
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1. Poor modeling 

2. Parameter estimation error 

3. Non-stationarity

• Unique and irreproducible 
observation set

• Error amplification via 
optimization

Conclusions and take-home message

Conclusions

Ø Multivariate elliptical distribution family is 
appropriate for portfolio optimization (not 
exclusively mean-variance)

Ø LoGo sparse inverse covariance estimation 
largely improves model likelihood and 
portfolio performances

Ø ICC clustering is effective in handling non-
stationarity

Ø A lot more can be done! Collaborations 
welcome
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